ЭВ-205.000. 000.000.00РЭ Часть 3 **20.03.2024** V1.1.1

# ПРЕОБРАЗОВАТЕЛИ РАСХОДА ВИХРЕВЫЕ «ЭМИС-ВИХРЬ 200 (ЭВ-200)»

# Модификации ЭВ-205 Руководство по эксплуатации



Высокая точность измерений

Независимость точности измерений от параметров процесса

Возможность имитационной поверки

ЖК дисплей с оптическими кнопками

Встроенная самодиагностика

Подключение по USB









ЗАО «ЭМИС» Россия, Челябинск



Настоящее руководство по эксплуатации предназначено для изучения устройства, работы, правил эксплуатации, технического обслуживания и поверки преобразователей расхода вихревых «ЭМИС-ВИХРЬ 200 (ЭВ-200)» модификации ЭВ-205 (в дальнейшем «преобразователь», «расходомер»).

В руководстве по эксплуатации приведены основные технические характеристики, указания по применению, указания по поверке, правила транспортирования и хранения, а также другие сведения, необходимые для обеспечения правильной эксплуатации преобразователя расхода.

Конструкция преобразователя постоянно совершенствуется, поэтому у приобретенного Вами прибора могут быть незначительные отличия от приведенного в настоящем документе описания, не влияющие на работоспособность, технические характеристики и удобство работы.

Перечень документов, на которые даны ссылки в настоящем руководстве, приведён в **приложении А.** 

Любое использование материала настоящего издания, полное или частичное, без письменного разрешения правообладателя запрещается.

Изготовитель оставляет за собой право вносить изменения в конструкцию преобразователя, не ухудшающие его потребительских качеств, без предварительного уведомления.

# СОДЕРЖАНИЕ

| 1 ОПИСАНИЕ И РАБОТА                                                                               | 4  |
|---------------------------------------------------------------------------------------------------|----|
| 1.1. Назначение преобразователя расхода                                                           | 4  |
| 1.2 Характеристики                                                                                | 7  |
| 1.3 Обеспечение взрывозащиты                                                                      | 10 |
| 1.4 Состав преобразователя расхода                                                                | 12 |
| 1.5 Устройство и работа                                                                           | 13 |
| 1.6 Маркировка и пломбирование                                                                    | 14 |
| 2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ                                                                     | 15 |
| 2.1 Эксплуатационные особенности                                                                  | 15 |
| 2.2 Требования к монтажу                                                                          | 16 |
| 2.3 Использование                                                                                 | 19 |
| 3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ                                                                        | 20 |
| 4 ПОВЕРКА                                                                                         | 20 |
| 5 ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОТКАЗОВ                                                                      | 20 |
| 6 УПАКОВКА И ХРАНЕНИЕ                                                                             | 21 |
| 7 ТРАНСПОРТИРОВАНИЕ                                                                               | 22 |
| 8 УТИЛИЗАЦИЯ                                                                                      | 22 |
| 9 СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ                                                      | 22 |
| Приложение А Перечень ссылочных документов                                                        | 23 |
| <b>Приложение Б</b> Габаритные, присоединительные размеры и масса преобразователей                | 24 |
| <b>Приложение В</b> Комплект монтажных частей (КМЧ)                                               | 27 |
| <b>Приложение Г</b> Чертеж средств обеспечения взрывозащиты преобразователей                      | 28 |
| Приложение Д Перечень средств измерений, используемых при поверке                                 | 31 |
| <b>Приложение Е</b> Настройка погружного преобразователя расхода согласно условиям применения     | 33 |
| <b>Приложение Ж</b> Монтаж погружного преобразователя расхода без остановки потока в трубопроводе | 35 |
| <b>Приложение И</b> Методика выполнения измерений                                                 | 40 |

#### 1 ОПИСАНИЕ И РАБОТА

# 1.1. Назначение преобразователя расхода

1.1.1 Преобразователи расхода ЭВ-205 предназначены для измерения объёма и объёмного расхода жидкостей, газов, (природного газа, попутного нефтяного газа, воздуха и др. газов), насыщенного и перегретого пара, агрессивных сред при рабочем давлении и рабочей температуре в различных отраслях промышленности, в составе счетчиков газа и пара.

Преобразователи расхода могут использоваться в составе автоматических систем управления и контроля и локальных схемах автоматизации с использованием частотно-импульсного сигнала по ГОСТ 26.010, токового сигнала по ГОСТ 26.011 и цифрового сигнала ModBus (RS485, USB) и HART.

- 1.1.2 По методу измерения преобразователи ЭВ-205 являются погружными и имеют код исполнения «ПР». По методу измерения погружные преобразователи ЭВ-205 соответствуют <u>ГОСТ 8.361</u>.
- 1.1.3 Преобразователи расхода предназначены для измерения объёма и объёмного расхода среды, имеющей следующие параметры:
- 1) температура от минус 40°C до плюс 250°C; исполнения по температуре и соответствующие им температурные диапазоны измеряемой среды приведены в *таблице 1.1.*

Таблица 1.1– Исполнения по температуре измеряемой среды

| Код исполнения по | Температура измеряемой среды, °С |              |  |  |  |  |
|-------------------|----------------------------------|--------------|--|--|--|--|
| температуре       | минимальная                      | максимальная |  |  |  |  |
| «85»              | - 40                             | + 85         |  |  |  |  |
| «100»             | - 40                             | + 100        |  |  |  |  |
| «135»             | - 40                             | + 135        |  |  |  |  |
| «200»             | - 40                             | + 200        |  |  |  |  |
| «250»             | - 40                             | + 250        |  |  |  |  |

- 2) избыточное давление не более 2,5 МПа
- 3) содержание механических примесей не более 250 мг/м<sup>3</sup> для газа и не более 1 г/л для жидкости;
- 4) содержание газовых включений в жидкости не более 2,5% по объёму для преобразователей класса точности 0,5% и не более 4% для преобразователей классов точности 1 и 1,5%. При содержании газовых включений до 10% по объёму полная относительная погрешность не превышает ±5%;
  - 5) динамическая вязкость среды не более 7 мПа\*с для жидкостей:
- 6) измеряемая среда по своим свойствам не должна вызывать коррозии у материала проточной части преобразователя расхода.
- 1.1.4 Преобразователи расхода общепромышленного исполнения предназначены для работы во взрывобезопасных условиях.

Преобразователи взрывозащищенного исполнения **Вн** предназначены для работы во взрывоопасных условиях со взрывоопасными смесями подгруппы **IIC**, имеют вид взрывозащиты «взрывонепроницаемая оболочка» и маркировку взрывозащиты «**1 Ex d IIC (T2-T6) Gb X**».

Преобразователи взрывозащищенного исполнения **ExB** предназначены для работы во взрывоопасных условиях с взрывоопасными смесями подгруппы **IIB**, имеют вид взрывозащиты «искробезопасная электрическая цепь» и маркировку взрывозащиты «1 **Ex ib IIB** (**T2-T6**) **Gb X**».

Преобразователи взрывозащищенного исполнения **ExiaB** предназначены для работы во взрывоопасных условиях с взрывоопасными смесями подгруппы **IIB**, имеют вид взрывозащиты «искробезопасная электрическая цепь» и маркировку взрывозащиты «1 **Ex ia IIB (T2-T6) Gb X**», «0 **Ex ia IIB (T2-T6) Ga X**».

Преобразователи взрывозащищенного исполнения **ExiaC** предназначены для работы во взрывоопасных условиях с взрывоопасными смесями подгруппы **IIC**, имеют вид взрывозащиты «искробезопасная электрическая цепь» и маркировку взрывозащиты «1 **Ex ia IIC** (**T2-T6**) **Gb X**», «**0 Ex ia IIC** (**T2-T6**) **Ga X**»

Особенности обеспечения взрывозащиты преобразователей описаны в п.1.3 «Обеспечение взрывозащиты».

- 1.1.5 Преобразователи расхода имеют степень защиты от воздействия окружающей среды IP66/68 по <u>ГОСТ 14254</u>, и соответствуют по защищенности обыкновенному исполнению по <u>ГОСТ Р 52931</u>.
- 1.1.6 Преобразователи расхода устойчивы к воздействию внешнего переменного магнитного поля сетевой частоты с напряженностью до 400 А/м в соответствии с <u>ГОСТ Р 50648</u>.
- 1.1.7 Преобразователи в диапазоне расходов от **Qп** до **Qнаиб** (см. *таблицу 1.*) устойчивы к вибрациям с частотой от 10 до 100 Гц и с ускорением, не превышающим 4,9 м/с², и относятся к группе NX по <u>ГОСТ Р 52931</u>.

По специальному заказу возможно изготовление преобразователей расхода, в диапазоне расходов от **Qn** до **Qhauб** устойчивых к вибрациям с частотой от 10 до 500  $\Gamma$ ц и с ускорением вплоть до 2 «g», относящихся к группе F1 и F2 по <u>ГОСТ P 52931</u>.

- 1.1.8 Преобразователи расхода по устойчивости к воздействию атмосферного давления в диапазоне от 84 до 106,7 кПа относятся к группе исполнения Р1 по ГОСТ Р 52931.
- 1.1.9 По устойчивости к воздействию климатических факторов внешней среды преобразователи расхода соответствуют исполнению УХЛ, У, ХЛ категорий размещения 1-4 по <u>ГОСТ 15150</u>.

Температура окружающей среды для преобразователей, кроме исполнения с расширенной двухпроводной схемой подключения «Т», должна находиться в пределах от минус 60°C до плюс 70°C, влажность не более 95±3% при +35°C без осаждения конденсата.

Для преобразователей расхода с расширенной двухпроводной схемой подключения «Т» температура окружающей среды должна находиться в пределах от минус 40°C до плюс 70°C. По специальному заказу возможно изготовление преобразователей на температуру от минус 60°C до плюс 70°C.

1.1.10 Условное обозначение преобразователей при заказе составляется по структурной схеме, приведенной в *таблице 1.2.1.* 

Таблица 1.2.1 – Структура обозначения преобразователей ЭВ-205

| Код | 0              | Наименование из       | делия                                                 |                      |                   |                     |  |  |  |  |  |  |
|-----|----------------|-----------------------|-------------------------------------------------------|----------------------|-------------------|---------------------|--|--|--|--|--|--|
|     | ЭМИС-ВИХРЬ 205 | Погружной преобра     | <b>Тогружной преобразователь</b>                      |                      |                   |                     |  |  |  |  |  |  |
| Код | 1              | Взрывозащита          |                                                       |                      |                   |                     |  |  |  |  |  |  |
|     | -              | без взрывозащиты      | ез взрывозащиты                                       |                      |                   |                     |  |  |  |  |  |  |
|     | ExB            | 1 Ex ib IIB (T2-T6) 0 | Ex ib IIB (T2-T6) Gb X                                |                      |                   |                     |  |  |  |  |  |  |
|     | ExiaB          | 1 Ex ia IIB (T2-T6) C | Ex ia IIB (T2-T6) Gb X³ или 0 Ex ia IIB (T2-T6) Ga X³ |                      |                   |                     |  |  |  |  |  |  |
|     | ExiaC          | 1 Ex ia IIC (T2-T6) ( | Ex ia IIC (T2-T6) Gb X³ или 0 Ex ia IIC (T2-T6) Ga X³ |                      |                   |                     |  |  |  |  |  |  |
|     | Вн             | 1 Ex d IIC (T2-T6) G  | b X                                                   |                      |                   |                     |  |  |  |  |  |  |
| Код | 2              | Типоразмер прео       | бразовал                                              | пеля (ДУ тр          | убопровод         | da)                 |  |  |  |  |  |  |
|     | 300            | 300 мм                | 450                                                   | 450 мм               | 1                 |                     |  |  |  |  |  |  |
|     | 350            | 350 мм                | 500                                                   | 500 мм               | 1 200             | 2000                |  |  |  |  |  |  |
|     | 400            | 400 мм                | 600                                                   | 600 мм               | 1 X               | спец. заказ         |  |  |  |  |  |  |
| Код | 3              | Класс точности        | (см. <u>таб</u>                                       | <u>пицу 1.5</u> )    | ·                 |                     |  |  |  |  |  |  |
|     | Α              | класс точности А      |                                                       |                      |                   |                     |  |  |  |  |  |  |
|     | Б              | класс точности Б      |                                                       |                      |                   |                     |  |  |  |  |  |  |
|     | В              | класс точности В      | ласс точности B                                       |                      |                   |                     |  |  |  |  |  |  |
| Код | 4              | Диапазон расхода      | <b>Диапазон расхода (см. <u>таблицу 1.3</u>)</b>      |                      |                   |                     |  |  |  |  |  |  |
|     | -              | стандартный           |                                                       | Χ                    | спец. зака        | 3                   |  |  |  |  |  |  |
| Код | 5              | Измеряемая сред       | а                                                     |                      |                   |                     |  |  |  |  |  |  |
|     | Ж              | жидкость              |                                                       |                      |                   |                     |  |  |  |  |  |  |
|     | Γ              | газ / насыщенный г    | ар / пере                                             | гретый пар           |                   |                     |  |  |  |  |  |  |
| Код | 6              | Материал прото        | чной час                                              | mu                   |                   |                     |  |  |  |  |  |  |
|     | н              | нержавеющая стал      | ь по умол                                             | тчанию (см. <u>/</u> | <u>таблицу 1.</u> | <u>6</u> )          |  |  |  |  |  |  |
| Код | 7              | Размещение элек       | тронног                                               | о блока              |                   |                     |  |  |  |  |  |  |
|     | _              | совместное размел     | цение да                                              | гчика и элект        | ронного пре       | еобразователя       |  |  |  |  |  |  |
|     | Д              | неразъемное диста     | анционно                                              | е размещени          | е эл. блока       | (длина кабеля 3 м)  |  |  |  |  |  |  |
|     | ДР             | разъемное дистань     | ционное р                                             | азмещение :          | эл. блока (д      | лина кабеля 3 м)    |  |  |  |  |  |  |
|     | Дхх (ДРхх)     | укажите требуемук     | длину ка                                              | абеля для ди         | ст. исполне       | ния (не более 50 м) |  |  |  |  |  |  |
| Код | 8              | Максимальное да       | вление и                                              | змеряемой            | среды             |                     |  |  |  |  |  |  |
|     | 1,6            | до 1,6 МПа            |                                                       | х                    | спец. зака        | 33                  |  |  |  |  |  |  |
|     | 2,5            | до 2,5 МПа            |                                                       |                      |                   |                     |  |  |  |  |  |  |
| Код | 9              | Максимальная те       | мперат                                                | ура измеряе          | мой средь         | I                   |  |  |  |  |  |  |
|     | 85             | до +85°С              |                                                       | 200                  | до +200%          | C                   |  |  |  |  |  |  |
|     | 100            | до +100°С             |                                                       | 250                  | до +250℃          |                     |  |  |  |  |  |  |
|     | 135            | до +135°C             |                                                       | X                    | спец. зак         |                     |  |  |  |  |  |  |

| Код | 10         | Индикатор                                                                                                                                   |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|     | -          | отсутствует                                                                                                                                 |
|     | СИМ        | встроенный индикатор с механической клавиатурой <sup>2</sup>                                                                                |
|     | СИО        | встроенный индикатор с оптической клавиатурой (кроме ExiaB) <sup>2</sup>                                                                    |
|     | СИ         | встроенный индикатор с магнитной клавиатурой <sup>1</sup>                                                                                   |
|     | X          | спец. заказ                                                                                                                                 |
| Код | 11         | Версия электронного блока (см. <u>таблицу 1.7</u> )                                                                                         |
|     | В          | расширенная                                                                                                                                 |
|     | C2         | базовая (версия 2)                                                                                                                          |
|     | Т          | расширенная с двухпроводной схемой подключения (с питанием по токовой петле)                                                                |
| Код | 12         | Выходные сигналы <sup>4</sup>                                                                                                               |
|     | -          | частотно-импульсный, цифровой ModBUS                                                                                                        |
|     | Α          | аналоговый, частотно-импульсный, цифровой ModBUS                                                                                            |
|     | <b>A</b> 1 | аналоговый без доп. погрешности, частотно-импульсный, ModBUS                                                                                |
|     | A-H        | аналоговый, частотно-импульсный, цифровой ModBUS, HART <sup>™</sup> v6                                                                      |
|     | A1-H1      | аналоговый без доп. погрешности, частотно-импульсный, цифровой ModBUS, HART <sup>TM</sup> v6                                                |
|     | A1-H2      | аналоговый без доп. погрешности с HART <sup>TM</sup> v7 (совмещенный с питанием), частотно-импульсный / частотно-импульсный с NAMUR         |
|     | A1-H3      | аналоговый с NAMUR без доп. погрешности с HART <sup>TM</sup> v7 (совмещенный с питанием), частотно-импульсный / частотно-импульсный с NAMUR |
|     | X          | спец. заказ                                                                                                                                 |
| Код | 13         | Исполнение электронного блока                                                                                                               |
|     | -          | электронный блок с двумя отверстиями под кабельные вводы                                                                                    |
|     | У          | электронный блок с четырьмя отверстиями под кабельные вводы                                                                                 |
| Код | 14         | Калибровка, поверка                                                                                                                         |
|     | -          | заводская калибровка по 5 точкам, тест на давление                                                                                          |
|     | ГΠ         | государственная поверка с возможностью имитационной поверки                                                                                 |
|     | ГП-БИ      | государственная поверка без возможности имитационной поверки                                                                                |
| Код | 15         | Минимальная температура окружающей среды                                                                                                    |
|     | _          | стандартное исполнение <sup>5</sup>                                                                                                         |
|     | -60        | -60°C (спец. исполнение для версии электронного блока <b>T</b> )                                                                            |
| Код | 16         | Спец. исполнение для предприятий                                                                                                            |
|     | -          | стандартное исполнение                                                                                                                      |
|     | AST        | для применения на средах, содержащих сероводород                                                                                            |

Примечание: «-» (прочерк) обозначает, что данное исполнение является стандартным;

- только для исполнения с двухпроводной схемой подключения;
- <sup>2</sup> кроме исполнения с двухпроводной схемой подключения;
- <sup>3</sup> кроме базовой версии 2 электронного блока;
- 4 применимость выходных сигналов:
  - «-» кроме версии электронного блока с двухпроводной схемой подключения;
- А, А1, А-Н, А1-Н1 кроме расширенной версии электронного блока с двухпроводной схемой подключения;
  - А1-H2, А1-H3 только для расширенной версии с двухпроводной схемой подключения. 

    5 -60°С кроме версии электронного блока **T**, -40°С для версии электронного блока **T**.

Пример обозначения погружного преобразователя ЭВ-205

| Код   | 0                 | 1 | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9   | 10  | 11 | 12 | 13 | 14 | 15 | 16 |
|-------|-------------------|---|-----|---|---|---|---|---|---|-----|-----|----|----|----|----|----|----|
| Заказ | ЭМИС-ВИХРЬ<br>205 | _ | 400 | Б | - | ж | Н | _ | _ | 2,5 | СИО | В  | Α  | _  | ГΠ | _  | 1  |

1.1.11 Преобразователи исполнения AST рассчитаны на работу при содержании сероводорода в окружающей среде в нормальном режиме не более 10 мг/м3, в аварийной ситуации - до 100 мг/м3 в течение не более 1 часа. Содержание растворенного сероводорода в жидкости до 6% по объему.

1.1.12 Условное обозначение комплекта монтажных частей (КМЧ) преобразователей при заказе составляется по структурной схеме, приведенной в *таблице 1.2.2.* 

Таблица 1.2.2 – Структура обозначения КМЧ для преобразователей ЭВ-205

| Код | 0              | Наименовани                        | Наименование изделия                         |       |         |                      |                          |  |  |  |  |
|-----|----------------|------------------------------------|----------------------------------------------|-------|---------|----------------------|--------------------------|--|--|--|--|
|     | ЭМИС-ВИХРЬ 205 | КМЧ для погружного преобразователя |                                              |       |         |                      |                          |  |  |  |  |
| Код | 1              | Типоразмер г                       | Гипоразмер преобразователя (ДУ трубопровода) |       |         |                      |                          |  |  |  |  |
|     | 300            | 300 мм                             | 300 мм <b>450</b> 450 мм (только             |       |         |                      |                          |  |  |  |  |
|     | 350            | 350 мм                             | 500                                          | 50    | 0 мм    | 2000                 | 2000 (только для ЭВ-205) |  |  |  |  |
|     | 400            | 400 мм                             | 550                                          | 55    | 0 мм    | Х                    | спец. заказ              |  |  |  |  |
| Код | 2              | Максимально                        | е давлен                                     | ие из | меряем  | ой сре               | ды                       |  |  |  |  |
|     | 1,6            | до 1,6 МПа                         |                                              |       |         | K                    | спец. заказ              |  |  |  |  |
|     | 2,5            | до 2,5 МПа                         | до 2,5 МПа                                   |       |         |                      |                          |  |  |  |  |
| Код | 3              | Максимальна                        | Максимальная температура измеряемой среды    |       |         |                      |                          |  |  |  |  |
|     | 85             | до +85°С                           |                                              |       | 200     |                      | до +200°С                |  |  |  |  |
|     | 100            | до +100°С                          |                                              |       | 250     |                      | до +250°C                |  |  |  |  |
|     | 135            | до +135°С                          |                                              |       | X       |                      | спец. заказ              |  |  |  |  |
| Код | 4              | Материал пр                        | иварного                                     | о пат | рубка ( | см. <mark>При</mark> | <u>ложение Б</u> )       |  |  |  |  |
|     | -              | сталь 09Г2С                        |                                              |       | 13X     | ФΑ                   | сталь 13ХФА              |  |  |  |  |
|     | Н              | сталь 12Х18Н                       | 10T                                          |       | 2       | <b>K</b>             | спец. заказ              |  |  |  |  |
|     | Ст20           | сталь 20                           |                                              |       |         |                      |                          |  |  |  |  |
| Код | 5              | Наличие шар                        | Наличие шарового крана                       |       |         |                      |                          |  |  |  |  |
|     | _              | нет                                |                                              |       |         |                      |                          |  |  |  |  |
|     | K              | с шаровым кра                      | аном                                         |       |         |                      |                          |  |  |  |  |

Пример обозначения КМЧ для погружного преобразователя ЭВ-205

| Код   | 0                                        | 1   | 2   | 3   | 4 | 5 |
|-------|------------------------------------------|-----|-----|-----|---|---|
| Заказ | Комплект монтажных частей ЭМИС-ВИХРЬ 205 | 800 | 1,6 | 100 | _ | - |

#### 1.2 Характеристики

1.2. Наименьшие (*Qнаим*) и наибольшие (*Qнаиб*) значения измеряемых объёмных расходов воды и воздуха для преобразователей ЭВ-205 приведены в *таблице 1.3.* 

Для датчика расхода Ду40 указаны диапазоны расходов при калибровке и поверке. Поверка производится при температуре 20°С и нулевом избыточном давлении.

Для типоразмеров трубопровода 300-2000мм указаны диапазоны расходов, рассчитанные согласно **приложению Е** для условного диаметра трубопровода при установке датчика в положение по умолчанию (см. n.2.2.4).

Таблица 1.3 – Диапазоны измерения для преобразователей ЭВ-205

|                        | Измеряемый расход, м <sup>3</sup> /ч |       |          |            |          |       |              |  |  |
|------------------------|--------------------------------------|-------|----------|------------|----------|-------|--------------|--|--|
| Типоразмер             | Во                                   | да    |          | Исполнение |          |       |              |  |  |
| расходомера            |                                      | l     |          | Qнаим      |          |       | по давлению, |  |  |
| (ДУ), мм               | Qнаим                                | Qнаиб | 85, 100C |            | 135-250C | Qнаиб | МПа          |  |  |
|                        |                                      |       | 1,6 МПа  | 2,5 МПа    | 133-2500 |       |              |  |  |
| 40 (датчик<br>расхода) | 1                                    | 28    | 11       | 23         | 23       | 210   | 1,6-2,5      |  |  |
| 300                    | 75                                   | 2030  | 800 1670 |            | 1670     | 15230 | 1,6-2,5      |  |  |
| 350                    | 100                                  | 2770  | 1090     | 2280       | 2280     | 20770 | 1,6-2,5      |  |  |
| 400                    | 130                                  | 3630  | 1430     | 2980       | 2980     | 27240 | 1,6-2,5      |  |  |

Продолжение таблицы 1.3

| Продолжение та          |       |       | Измеряем | ый расход, м | <sup>3</sup> /ч |                     |         |
|-------------------------|-------|-------|----------|--------------|-----------------|---------------------|---------|
| Типоразмер              | Во    | да    |          | Исполнение   |                 |                     |         |
| расходомера<br>(ДУ), мм |       |       |          | Qнаим        |                 | по давлению,<br>МПа |         |
| (ДУ), MM                | Qнаим | Qнаиб | 85,      | 100C         | 135-250C        | Qнаиб               | IVIIIa  |
|                         |       |       | 1,6 МПа  | 2,5 МПа      |                 |                     |         |
| 450                     | 165   | 4600  | 1810     | 3780         | 3780            | 34550               | 1,6-2,5 |
| 500                     | 200   | 5700  | 2240     | 4680         | 4680            | 42750               | 1,6-2,5 |
| 600                     | 300   | 8200  | 3240     | 6770         | 6770            | 61800               | 1,6-2,5 |
| 700                     | 400   | 11300 | 4430     | 9260         | 9260            | 84500               | 1,6-2,5 |
| 800                     | 540   | 15100 | 5950     | -            | 12440           | 113600              | 1,6     |
| 800                     | 530   | 14800 | -        | 12140        | 12140           | 110800              | 2,5     |
| 900                     | 690   | 19200 | 7560     | -            | 15810           | 144300              | 1,6     |
| 900                     | 670   | 18800 | -        | 15430        | 15430           | 140900              | 2,5     |
| 1000                    | 850   | 23900 | 9370     | •            | 19600           | 178900              | 1,6     |
| 1000                    | 830   | 23300 | -        | 19130        | 19130           | 174600              | 2,5     |
| 1100                    | 1030  | 29000 | 11380    | 23790        | 23790           | 217200              | 1,6-2,5 |
| 1200                    | 1240  | 34600 | 13600    | 28420        | 28420           | 259500              | 1,6-2,5 |
| 1300                    | 1460  | 40700 | 16000    | 33460        | 33460           | 305500              | 1,6-2,5 |
| 1400                    | 1700  | 47400 | 18620    | 38930        | 38930           | 355400              | 1,6-2,5 |
| 1500                    | 1950  | 54600 | 21440    | 44830        | 44830           | 409300              | 1,6-2,5 |
| 1600                    | 2200  | 62200 | 24440    | 51100        | 51100           | 466600              | 1,6-2,5 |
| 1800                    | 2800  | 79000 | 31030    | 64880        | 64880           | 592400              | 1,6-2,5 |
| 2000                    | 3500  | 98000 | 38460    | 80430        | 80430           | 734300              | 1,6-2,5 |

1.2.2 Наименьшие (*Qрнаим*) и наибольшие (*Qрнаиб*) значения измеряемых расходов газообразных сред при рабочих условиях определяются по следующим формулам:

**Qpнaum = max (Qнaum \*** 
$$\sqrt{K1/\rho}$$
 *uлu Vmin \**  $\pi$  \*  $d^2/4*0,0036$ ), м<sup>3</sup>/ч (1.1)

**Qpнauб = min (Qнauб \*** 
$$\sqrt{K2/\rho}$$
 или **Qнauб)**, м<sup>3</sup>/ч, (1.2)

где **Qнаим** и **Qнаиб** – наименьший и наибольший расход согласно *таблице 1.3*;

 $\rho$  – плотность газа при рабочих условиях, кг/м<sup>3</sup>;

**d** – внутренний диаметр трубопровода;

Vmin – минимальная скорость потока, м/с (см. *таблицу 1.4*);

K1, K2 – эмпирические коэффициенты (см. *таблицу 1.4*).

Таблица 1.4 – Коэффициенты для расчета диапазона расходов газа при рабочих условиях

| Коэффициент К1 | Коэффициент К2 | Минимальная скорость Vmin, м/с |
|----------------|----------------|--------------------------------|
| 1,2            | 26             | 2                              |

- 1.2.3 Подбор расходомеров следует производить по расходам при рабочих условиях. Если в опросном листе для газов указаны расходы, приведенные к стандартным условиям (в нм³/ч), то эти расходы необходимо пересчитать для рабочих условий.
- 1.2.4 Пределы допускаемой относительной погрешности при измерении объёмного расхода и объёма по индикатору, частотному, импульсному, цифровому выходу, а также по токовому выходу исполнений «A1»,«A1-H1»,«A1-H2»,«A1-H3» в зависимости от класса точности преобразователей представлены в *таблице 1.5*.

Таблица 1.5 – Пределы погрешностей

| Измеряемая | Измеряемая Пределы допускаемой погрешности для классов точности, % |       |       |       |           |                         |             |  |
|------------|--------------------------------------------------------------------|-------|-------|-------|-----------|-------------------------|-------------|--|
| среда      | Qп ≤Q≤Qнаиб                                                        |       |       |       | Qнаим ≤Q< | Переходный расход<br>Qп |             |  |
| op opg     | Α                                                                  | Б     | В     | Α     | Б         |                         |             |  |
| Жидкость   | ± 0,5                                                              | ± 1,0 | ± 1,5 | ± 1,0 | ± 1,5     | ± 2,5                   | 0,125∙Qнаиб |  |
| Газ и пар  | ± 1,0                                                              | ± 1,5 | ± 2,0 | ± 2,0 | ± 2,5     | ± 3,5                   | 0,15∙Qнаиб  |  |

1.2.5 Пределы допускаемой относительной погрешности при измерении объемного расхода по токовому выходу для исполнений «А» и «А-Н» не превышают

$$\delta_{QI} = \pm [|\delta| + 0.2 * Imax/(4+16 * Q/QHau6)], %$$
 (1.3)

где  $\delta$  – допускаемая погрешность согласно *таблице* 1.5, %;

Imax=20 мА – максимальное значение силы тока в цепи токового выходного сигнала;

 $\mathbf{Q}$  – значение расхода, м<sup>3</sup>/ч;

**Qнаиб** – наибольший расход, соответствующий 20мА токового выходного сигнала согласно паспорту преобразователя, м<sup>3</sup>/ч.

- 1.2.6 Преобразователи относятся к восстанавливаемым, ремонтируемым, однофункциональным изделиям группы II вида I по ГОСТ 27.003.
- 1.2.7 Габаритные, присоединительные размеры преобразователей и масса преобразователей соответствуют данным, приведенным в *приложении Б*.
- 1.2.8 Значение потери давления на преобразователе зависит от измеряемой среды, от типоразмера преобразователя и скорости потока. Формулы расчета приведены в п. 2.1.4.
  - 1.2.9 Параметры надежности преобразователей:
- средняя наработка на отказ преобразователей, с учетом технического обслуживания, регламентируемого руководством по эксплуатации, должна составлять не менее 75000 ч;
  - среднеквадратическое отклонение отказов не менее 0,15;
  - закон распределения вероятностей отказов нормальный (Гауссовский);
- среднее время восстановления работоспособного состояния ремонтируемого преобразователя не более 3 часов;
  - средний срок службы преобразователя 15 лет.

Отказом преобразователя считается его несоответствие требованиям п.1.2.4.

1.2.10 Материалы, из которых изготовлены контактирующие с измеряемой средой элементы конструкции преобразователя, указаны в *таблице 1.6*.

Таблица 1.6 – Основные материалы, из которых изготавливаются преобразователи

| Код Материал |                                                            |          |          |                      |  |  |  |  |
|--------------|------------------------------------------------------------|----------|----------|----------------------|--|--|--|--|
| материала    | проточная часть тело обтекания сенсор прокладка под сенсор |          |          |                      |  |  |  |  |
| Н            | AISI 304                                                   | AISI 304 | AISI 304 | Фторопласт, графлекс |  |  |  |  |

1.2.11 Подробная информация об устройстве, работе, правилах эксплуатации, о монтаже, подключении и настройке электронного блока приведена в руководстве по эксплуатации на **«Электронный блок преобразователя расхода вихревого»** в соответствии с *таблицей 1.7.* 

Таблица 1.7 – Перечень руководств по эксплуатации на электронные блоки

| Обозначение документа   | Наименование                                                                                                                         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| ЭВ-200.000.000.002.01РЭ | Электронный блок преобразователя расхода вихревого «ЭМИС-ВИХРЬ 200 (ЭВ-200)» (расширенная версия, версия с вычислителем)             |
| ЭВ-200.000.000.002.02РЭ | Электронный блок преобразователя расхода вихревого «ЭМИС-ВИХРЬ 200 (ЭВ-200)» (базовая версия)                                        |
| ЭВ-200.000.000.002.03РЭ | Электронный блок преобразователя расхода вихревого «ЭМИС-ВИХРЬ 200 (ЭВ-200)» (расширенная версия с двухпроводной схемой подключения) |
| ЭВ-200.000.000.002.04РЭ | Электронный блок преобразователя расхода вихревого «ЭМИС-ВИХРЬ 200 (ЭВ-200)» (базовая версия «С2»)                                   |

Примечание: Указанные руководства доступны на caŭme https://emis-kip.ru

#### 1.3 Обеспечение взрывозащиты

1.3.1 Преобразователи взрывозащищенного исполнения **Вн** имеют вид взрывозащиты «взрывонепроницаемая оболочка» по <u>ГОСТ IEC 60079-1-2011</u>, предназначены для эксплуатации в среде взрывоопасных смесей группы IIC и выполняются с уровнем взрывозащиты «взрывобезопасный» с маркировкой по взрывозащите «1 Ex d IIC (T2-T6) Gb X».

Взрывозащита вида «взрывонепроницаемая оболочка» достигается помещением электрических частей преобразователя во взрывонепроницаемую оболочку, выдерживающую давление взрыва и исключающую передачу горения из преобразователя во внешнюю взрывоопасную среду. Взрывоустойчивость и взрывонепроницаемость оболочки преобразователей соответствуют требованиям для электрооборудования группы I и подгруппы IIC по ГОСТ IEC 60079-1-2011.

Взрывозащита вида «взрывонепроницаемая оболочка» обеспечивается следующими средствами:

- осевая длина резьбы и число полных витков в зацеплении резьбовых взрывонепроницаемых соединений оболочки соответствуют требованиям <u>ГОСТ IEC 60079-1-2013</u>;
- величины зазоров и длин плоских и цилиндрических взрывонепроницаемых соединений соответствуют требованиям <u>ГОСТ IEC 60079-1-2013</u>;
- механическая прочность корпусов соответствует требованиям <u>ГОСТ 31610.0-2014</u> для электрооборудования II и I групп с высокой опасностью механических повреждений;
- смотровое окно загерметизировано в металлическую оправу крышки оболочки преобразователя так, что составляет с крышкой нераздельное целое;
- максимальная температура нагрева поверхности преобразователя в условиях эксплуатации не должна превышать значений, допустимых для соответствующего температурного класса по <u>ГОСТ 31610.0-2014</u> (IEC 60079-0:2011).

Чертеж средств взрывозащиты вида «взрывонепроницаемая оболочка» приведен в <u>приложении</u> <u>Г</u>.

- Знак "X" в маркировке взрывозащиты указывает на особые условия эксплуатации преобразователей исполнения **Вн**:
- температура измеряемой среды не должна превышать допустимого значения для температурного класса преобразователей, установленного в маркировке взрывозащиты;
- максимальное значение избыточного давления измеряемой среды не должно превышать допустимого значения. Приведенного в паспорте;
- преобразователи исполнения **Вн** должны эксплуатироваться с сертифицированными Ех-кабельными вводами и Ех-заглушками, которые должны соответствовать виду взрывозащиты «d» для подгруппы IIC, диапазону температуры окружающей среды, соответствующему исполнению преобразователя и степени защиты от внешних воздействий IP66/IP68. Выбор кабельных вводов должен проводиться согласно <u>ГОСТ IEC 60079-1-2011</u>;
- окрашенные преобразователи с корпусом из сплава алюминия могут представлять опасность потенциального электростатического заряда. Допускается протирать только влажной или антистатической тканью;
  - открывать крышку допускается, только отключив прибор от сети;
- для соединения проточной части преобразователей дистанционного исполнения и корпуса электронного блока должны использоваться бронированные кабели или кабели в металлорукаве.
- 1.3.2 Преобразователи взрывозащищенных исполнений **ExB, ExiaB, ExiaC** имеют вид взрывозащиты «искробезопасная электрическая цепь» уровня «ib» / «ia» по <u>ГОСТ 31610.11-2014</u> (IEC 60079-11:2014), предназначены для эксплуатации в среде взрывоопасных смесей группы IIB или IIC и выполняются с уровнем взрывозащиты «взрывобезопасный» с маркировкой по взрывозащите «1 Ex ib IIB (T2-T6) Gb X», «1 Ex ia IIB (T2-T6) Gb X», «0 Ex ia IIB (T2-T6) Ga X», «1 Ex ia IIC (T2-T6) Gb X», «0 Ex ia IIC (T2-T6) Ga X» соответственно.

Взрывозащита вида «искробезопасная электрическая цепь» уровня «ib» / «ia» обеспечивается следующими средствами:

- электрическая нагрузка искрозащитных элементов цепей преобразователя не превышает 2/3 их паспортных значений в нормальном и аварийном режимах работы;
- электрические зазоры, пути утечки и электрическая прочность изоляции соответствуют требованиям ГОСТ 31610.11-2014;
- в цепи питания установлены последовательно три диода для предотвращения разряда входной емкости в линию питания и для защиты от перемены полярности. В цепи питания установлены три шунтирующих стабилитрона;
- внутренние емкость и индуктивность электрической схемы не накапливают энергий, опасных по искровому воспламенению газовых смесей категории IIB/IIC для преобразователей исполнений **ExB, ExiaB, ExiaC**;
- токоведущие соединения и электронные компоненты схемы преобразователя защищены от воздействия окружающей среды оболочкой, обеспечивающей степень защиты или IP66/IP68 по <u>ГОСТ</u> 14254.

Знак "X" в маркировке взрывозащиты указывает на особые условия в эксплуатации преобразователей исполнений **ExB**, **ExiaB**, **ExiaC**:

- температура измеряемой среды не должна превышать допустимого значения для температурного класса преобразователей, установленного в маркировке взрывозащиты;
- максимальное значение избыточного давления измеряемой среды не должно превышать допустимого значения, приведенного в паспорте;
- подключение внешних устройств к цифровому, частотно-импульсному, токовому выходам преобразователей исполнений ExB, ExiaB, ExiaC должно выполняться через сертифицированные барьеры искрозащиты, удовлетворяющие требованиям <u>ГОСТ 31610.11-2014 (IEC 60079-11:2014)</u> для взрывоопасных смесей газов категорий IIB или IIC и имеющие сертификаты соответствия требованиям TP TC 012/2011. Искробезопасные параметры барьеров должны соответствовать искробезопасным параметрам преобразователей;
- окрашенные преобразователи с корпусом из сплава алюминия могут представлять опасность потенциального электростатического заряда. Протирать только влажной или антистатической тканью;
  - открывать крышку допускается, только отключив прибор от сети;
- для соединения проточной части преобразователей дистанционного исполнения и корпуса электронного блока должны использоваться бронированные кабели или кабели в металлорукаве;
- для преобразователей, устанавливаемых в зоне класса 0, при эксплуатации не допускается трения или ударов по корпусу электронного блока, изготовленного из сплава алюминия.
- 1.3.3 Описание средств обеспечения взрывозащиты вида «искробезопасная электрическая цепь» приведено в руководстве по эксплуатации на **«Электронный блок преобразователя расхода вихревого»** (см. <u>таблицу 1.7</u>).
- 1.3.4 Около наружного заземляющего зажима преобразователей имеется рельефный знак заземления. На съемных крышках электронного блока преобразователей имеется предупредительная надпись: «Открывать, отключив от сети».
- 1.3.5 На корпусе преобразователей взрывозащищенных исполнений имеется табличка с маркировкой взрывозащиты. Содержание табличек приведено в разделе 1.6 «Маркировка и пломбирование».

# 1.4 Состав преобразователя расхода

1.4.1 Комплект поставки преобразователя приведен таблице 1.8.

#### Таблица 1.8 – Комплект поставки

| Nº | Наименование                                                   | Кол-во | Примечание                          |
|----|----------------------------------------------------------------|--------|-------------------------------------|
| 1  | Преобразователь расхода вихревой «ЭМИС-ВИХРЬ 205»              | 1      | Исполнение согласно заказу          |
| 2  | Паспорт ЭВ-205.000.000.000.00 ПС                               | 1      | Для модификации ЭВ-205              |
| 3  | Руководство по эксплуатации ЭВ-200.000.000.000.00РЭ<br>Часть 3 | 1      | На преобразователь                  |
| 4  | Руководство по эксплуатации ЭВ-200.000.000.002.00РЭ            | 1      | На электронный блок (по<br>заказу)* |
| 5  | Методика поверки ЭВ-200.000.000.000.00 МП                      | 1      | На партию**                         |
| 6  | Комплект монтажных частей (КМЧ) с паспортом                    | 1      | По заказу                           |
| 7  | Преобразователь интерфейса ЭМИС-СИСТЕМА 750 RS-<br>485/USB     | 1      | По заказу                           |
| 8  | Комплект кабелей для имитационного метода поверки              | 1      | По заказу                           |
| 9  | Блок питания                                                   | 1      | По заказу                           |
| 10 | Упаковочный ящик                                               | 1      |                                     |
| 11 | Струевыпрямитель «ЭМИС-ВЕКТА 1200» в комплекте с<br>фланцами   | 1      | По заказу                           |
| 12 | Шаровый кран                                                   | 1      | По заказу                           |
| 13 | Комплект запасных частей, инструментов и принадлежностей (ЗИП) | 1      | По заказу                           |
| 14 | Сертификаты на металл фланцев, на крепежные изделия, прокладки | 1      | По заказу                           |
| 15 | Сертификаты на преобразователь                                 | ***    | По запросу                          |

#### Примечание:

- 1. \* В зависимости от вида электронного блока (см. <u>таблицу 1.7</u>)
- 2. \*\*Если иное количество не указано в договоре поставки.
- 3. \*\*\*Перечень сертификатов на преобразователь (сертификаты предоставляются по запросу):
- Сертификат об утверждении типа средств измерений с Описанием типа;
- Сертификат соответствия ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах» с Ех-приложением:
- Решение по заявке на проведение сертификации по TP TC 032/2013 «О безопасности оборудования, работающего под избыточным давлением»:
- Сертификат соответствия ТР ТС 032/2013 «О безопасности оборудования, работающего под избыточным давлением» на корпус проточной части преобразователя;
- Сертификат соответствия ТР ТС 020/2011 «Электромагнитная совместимость технических средств».
- 1.4.2 Комплект монтажных частей поставляется отдельно по заказу. Состав КМЧ, в зависимости от исполнения преобразователя расхода приведен в *приложении В*.
- 1.4.3 Комплект ЗИП поставляется отдельно по заказу. В состав ЗИП входят кабельные вводы, прокладки и крепежные изделия для монтажа преобразователя, а также сальниковая набивка из терморасширенного графита для преобразователей на давление 1,6 МПа. По требованию заказчика в комплект ЗИП могут также входить и другие комплектующие.

# 1.5 Устройство и работа

#### 1.5.1 Устройство преобразователя и принцип работы

Погружной преобразователь (см. *рисунок 1.1*) состоит из датчика (1), штанги (2), приварного патрубка (3) и электронного блока (4). Электронный блок крепится на цилиндре проточной части с помощью трубчатой стойки (5). Электронные платы размещены в электронном блоке. Датчик конструктивно выполнен как проточный вихревой расходомер и измеряет скорость потока в одной точке.

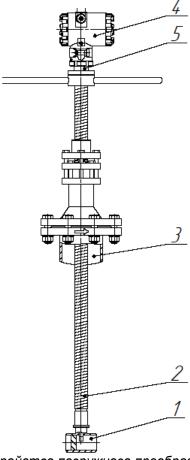



Рисунок 1.1 – Устройство погружного преобразователей расхода

В преобразователе реализован метод измерения расхода, основанный на измерении частоты вихрей. В цилиндре проточной части установлено тело обтекания, которое вызывает образование вихрей в набегающем потоке измеряемой среды. Вихри распространяются попеременно вдоль и сзади каждой из сторон тела обтекания. Частота срыва вихрей с тела обтекания пропорциональна скорости потока среды, а, следовательно, пропорциональна объёмному расходу измеряемой среды.

Эти завихрения вызывают колебания давления измеряемой среды по обе стороны крыла сенсора. Крыло передает пульсации давления на пьезоэлемент. Пьезоэлемент преобразует пульсации в электрические сигналы. Электронный блок формирует выходные сигналы преобразователя после усиления, фильтрации, преобразований и цифровой обработки сигнала.

# 1.5.2 Выбор типоразмера преобразователя расхода

Подбор преобразователя расхода производителем осуществляется с помощью специальной программы расчета на основе данных, представленных в опросном листе потребителем. При подборе преобразователя учитываются следующие факторы:

- 1. Параметры потока измеряемой среды, указанные потребителем в опросном листе, должны как можно точнее соответствовать реальным параметрам измеряемой среды. Давление, температура, плотность, вязкость, диапазоны реальных расходов существенно влияют на подбор. Если опросный лист потребителем заполнен без значительных отклонений от фактических параметров среды, то выбор преобразователя с использованием расчетов производителя обеспечит измерение расхода с нормируемой точностью во всем диапазоне расхода.
- 2. Внутренний диаметр трубопровода и длина прямых участков до места установки преобразователя и после него должны соответствовать рекомендациям, представленным в п. 2.2.2.
- 3. Гидравлические потери, возникающие на преобразователе, должны учитываться в гидравлическом расчете потерь всего трубопровода (формулы расчета приведены в пункте 2.1.4). С увеличением скорости истечения среды возрастают потери давления на преобразователе в квадратичной зависимости, что может привести при определенных параметрах среды к явлению кавитации. Поэтому следует выбирать преобразователь так, чтобы измеряемый расход находился во

второй трети диапазона расхода, где обеспечивается и необходимая метрология и исключаются большие потери и кавитация.

4. При измерении расхода жидкостей за преобразователем необходимо иметь определенное противодавление для исключения кавитации потока, приводящей к значительному искажению результатов измерений (формула расчета величины необходимого противодавления приведена в п. 2.1.5).

# 1.6 Маркировка и пломбирование

#### 1.6.1 Маркировка

- 1.6.1.1 На табличке, прикрепленной к корпусу электронного блока преобразователя, в соответствии с требованиями ГОСТ 12971 нанесены следующие знаки и надписи:
  - знак утверждения типа средства измерения по ПР 50.2.104.
  - заводской номер и год выпуска преобразователя;
  - условное обозначение преобразователя;
  - диаметр условного прохода;
  - максимальное значение рабочего давления, МПа;
  - максимальное значение температуры измеряемой среды, °С;
  - наименьшее и наибольшее значения расхода;
  - обозначение выходных сигналов;
  - код защиты от воздействия окружающей среды.
- 1.6.1.2 Преобразователи общепромышленного исполнения имеют отдельную табличку с указанием диапазона допустимых температур окружающей среды и надписью «Не использовать на взрывоопасных объектах».
- 1.6.1.3 Преобразователи взрывозащищенных исполнений с электронным блоком с двумя кабельными вводами имеют отдельную табличку с указанием маркировки взрывозащиты и параметров электрических цепей.

Для преобразователей исполнения **Вн** с взрывозащитой вида «взрывонепроницаемая оболочка»:

- 1 Ex d IIC T6 Gb X, 60 ≤  $t_a$  ≤ + 70  $^{0}$ C для температурного исполнения «85»;
- 1 Ex d IIC T5 Gb X,  $60 \le t_a \le + 70$  °C для температурного исполнения «100»;
- 1 Ex d IIC T4 Gb X, 60 ≤  $t_a$  ≤ + 70  $t_a$  С для температурного исполнения «135»;
- 1 Ex d IIC T3 Gb X,  $60 \le t_a \le +70$  °C для температурного исполнения «200»;
- 1 Ex d IIC T2 Gb X, 60 ≤  $t_a$  ≤ + 70  $^{\circ}$ C для температурных исполнений «250».

#### Для преобразователей исполнения ЕхВ:

- 1 Ex ib IIB T6 Gb X,  $60 \le t_a \le +70$  °C для температурного исполнения «85»; 1 Ex ib IIB T5 Gb X,  $60 \le t_a \le +70$  °C для температурного исполнения «100»;
- 1 Ex ib IIB T3 Gb X, 60  $\le$   $t_a$   $\le$  + 70  $^{\circ}$ C для температурного исполнения «135»; 1 Ex ib IIB T3 Gb X, 60  $\le$   $t_a$   $\le$  + 70  $^{\circ}$ C для температурного исполнения «200»; 1 Ex ib IIB T2 Gb X, 60  $\le$   $t_a$   $\le$  + 70  $^{\circ}$ C для температурных исполнений «250».

#### Для преобразователей исполнения ЕхіаВ:

- 1 Ex ia IIB T6 Gb X,  $60 \le t_a \le +70$   $^{\circ}$ С для температурного исполнения «85»; 1 Ex ia IIB T5 Gb X,  $60 \le t_a \le +70$   $^{\circ}$ С для температурного исполнения «100»; 1 Ex ia IIB T4 Gb X,  $60 \le t_a \le +70$   $^{\circ}$ С для температурного исполнения «135»;
- 1 Ex ia IIB T3 Gb X, 60 ≤  $t_a$  ≤ + 70  $^{0}$ C для температурного исполнения «200»;
- 1 Ex ia IIB T2 Gb X, 60 ≤  $t_a$  ≤ + 70  $^{0}$ C для температурных исполнений «250».
- 0 Ex ia IIB T6 Ga X, 60 ≤  $t_a$  ≤ + 70  $^{\circ}$ C для температурного исполнения «85»;
- 0 Ex ia IIB T5 Ga X, 60 ≤  $t_a$  ≤ + 70  $^{\circ}$ C для температурного исполнения «100»;
- 0 Ex ia IIB T4 Ga X,  $60 \le t_a \le +70\,^{\circ}$ С для температурного исполнения «135»;
- 0 Ex ia IIB Т3 Ga X, 60 ≤  $t_a$  ≤ + 70  $^{\circ}$ С для температурного исполнения «200»;
- 0 Ex ia IIB T2 Ga X, 60 ≤  $t_a$  ≤ + 70  $^{\circ}$ C для температурных исполнений «250».

#### Для преобразователей исполнения ExiaC:

- 1 Ex ia IIC T6 Gb X,  $60 \le t_a \le +70$   $^{0}$ C для температурного исполнения «85»; 1 Ex ia IIC T5 Gb X,  $60 \le t_a \le +70$   $^{0}$ C для температурного исполнения «100»; 1 Ex ia IIC T4 Gb X,  $60 \le t_a \le +70$   $^{0}$ C для температурного исполнения «135»; 1 Ex ia IIC T3 Gb X,  $60 \le t_a \le +70$   $^{0}$ C для температурного исполнения «200»; 1 Ex ia IIC T2 Gb X,  $60 \le t_a \le +70$   $^{0}$ C для температурных исполнений «250».

- 0 Ex ia IIC T6 Ga X,  $60 \le t_a \le +70$   $^{0}$ C для температурного исполнения «85»; 0 Ex ia IIC T5 Ga X,  $60 \le t_a \le +70$   $^{0}$ C для температурного исполнения «100»; 0 Ex ia IIC T4 Ga X,  $60 \le t_a \le +70$   $^{0}$ C для температурного исполнения «135»; 0 Ex ia IIC T3 Ga X,  $60 \le t_a \le +70$   $^{0}$ C для температурного исполнения «200»;

- 0 Ex ia IIC T2 Ga X, 60 ≤  $t_a$  ≤ + 70  $^{0}$ C для температурных исполнений «250».

Для преобразователей расхода с расширенной двухпроводной схемой подключения «Т» маркировка температуры окружающей среды «-40  $\le$  t<sub>a</sub>  $\le$  +70  $^{0}$ C».

#### 1.6.2 Пломбирование

Пломбирование преобразователей производится с целью недопущения несанкционированного доступа к электронному блоку. Пломбирование производится с помощью пломбы и проволоки, продетой через специальные отверстия в корпусе и в крышках электронного блока преобразователей.

На приборе установлены гарантийные наклейки: на соединении стойки с корпусом проточной части, на защитном переключателе на процессорной плате, на разъемных соединениях дистанционного исполнения. На приборы с поврежденными или отсутствующими гарантийными наклейками гарантия завода-изготовителя не распространяется.

#### 2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

#### 2.1 Эксплуатационные особенности

2.1.1 Преобразователь, поступивший к потребителю, сконфигурирован предприятием-изготовителем в соответствии с опросным листом и с учетом параметров конкретного технологического процесса (плотность среды, температура, давление, вязкость, расход измеряемой среды).

Для использования прибора на ином техпроцессе его необходимо переконфигурировать. Для этого необходимо направить по электронной почте файл записи действующей конфигурации прибора, записанный с помощью программы **«ЭМИС-Интегратор»** и новый опросный лист. Предприятие-производитель вышлет новый файл конфигурации, содержащий конфигурацию для измерения расхода среды с новыми параметрами. Дополнительной поверки прибора не требуется при использовании его на технологические измерения.

- 2.1.2 Преобразователи можно устанавливать и в помещении, и на открытом воздухе.
- 2.1.3 Возникновение сигнала при вибрации трубопровода и при отсутствии измеряемой среды так называемый «самоход» означает, что параметры вибрации трубопровода превышают допустимые значения, что приводит к возникновению паразитного сигнала сенсора преобразователя.

Снижению паразитного сигнала и устранению «самохода» для погружного преобразователя может способствовать заполнение проточной части преобразователя измеряемой средой.

Не всегда вибрации трубопровода являются причиной «самохода». Данное явление так же описано в руководстве по эксплуатации на **«Электронный блок преобразователя расхода вихревого»** (см. **таблицу 1.7**).

2.1.4 На проточной части преобразователя возникают потери давления  $\Delta P$ , которые можно вычислить по формуле

$$\Delta \mathbf{p} = \mathbf{A} \cdot \mathbf{p} \cdot (\mathbf{Q})^2 / \mathbf{D}^4, \, \kappa \Pi \mathbf{a} \tag{2.1}$$

где  $\rho$  - плотность измеряемой среды при рабочих условиях, кг/м<sup>3</sup>;

Q – объёмный расход среды при рабочих условиях, м<sup>3</sup>/ч;

D – внутренний диаметр трубопровода, мм;

A – коэффициент, A = 30 (кПа·ч $^2$ ·мм $^4$ )/(кг·м $^3$ ).

2.1.5 В процессе измерения расходов жидкостей необходимо учитывать, что при определенных режимах истечения возможно возникновение кавитации (вскипание жидкости). Кавитация приводит к невозможности измерения. Чтобы не допустить этого, необходимо обеспечивать избыточное давление (**P**) на расстоянии 5-и диаметров трубы за преобразователем выше значения вычисляемого по формуле

$$P = 2.9 \Delta P + 1.3 p_{\nu},$$
 (2.2)

где  $\Delta P$  - потери давления на преобразователе,  $\kappa \Pi a$ ;

Если вычисленное по формуле давление выше реального избыточного давления в трубопроводе, то необходимо установить предохранительный клапан, повышающий давление.

- 2.1.6 Преобразователь поставляется потребителю с компенсированной температурной погрешностью. С помощью программы *«ЭМИС-Интегратор»* производитель программирует прибор на температуру измеряемой среды согласно опросному листу. Потребитель может самостоятельно задать другую температуру.
- 2.1.7 При использовании преобразователя для измерения расхода насыщенного пара степень сухости пара должна быть не менее 0,8.
- 2.1.8 Погружной преобразователь измеряет скорость потока. Для получения требуемой точности измерения расхода необходимо измерить фактический внутренний диаметр трубопровода и внести значение диаметра в память прибора с помощью программы **«ЭМИС-Интегратор»**.

Измерительное сечение трубопровода выбирают на прямом участке трубы перед расходомером, но не ближе 5 диаметров трубы к концу прямого участка. Площадь измерительного сечения определяют по среднеарифметическому значению четырех диаметров, равномерно расположенных в сечении. Измерение необходимо проводить микрометрическим нутромером по <u>ГОСТ 10</u>. При невозможности непосредственного измерения внутреннего диаметра трубы допускается определять площадь измерительного сечения измерением наружного периметра и толщины стенки трубы. Наружная поверхность трубы должна быть тщательно защищена и не иметь вмятин и выступов. Измерение необходимо проводить металлической рулеткой по <u>ГОСТ 7502</u>. Толщину стенки измеряют индикаторным толщиномером по <u>ГОСТ 11358</u>, штангенциркулем по <u>ГОСТ 166</u> или ультразвуковым толщиномером.

2.1.9 Не рекомендуется использовать преобразователь для процессов с резко изменяющимся расходом, например, в системах дозирования. Для уменьшения времени реагирования преобразователя на резкое изменение расхода рекомендуется уменьшить степень демпфирования или отключить демпфирование, установив степень 0.

#### 2.2 Требования к монтажу

#### 2.2.1 Общие требования к монтажу преобразователя

Монтаж (демонтаж), электрическое подключение, настройку, эксплуатацию преобразователей должны выполнять лица, изучившие настоящее руководство по эксплуатации и прошедшие инструктаж по технике безопасности при работе с электротехническими установками.

При установке преобразователя необходимо руководствоваться следующими обязательными правилами:

- к преобразователю должен быть обеспечен свободный доступ;
- место установки преобразователя должно обеспечивать его эксплуатацию без возможных механических повреждений;
- не допускается устанавливать преобразователь в затапливаемых подземных теплофикационных помещениях;
- прямолинейные участки трубопровода и проточной части преобразователя при измерении жидкости должны быть полностью заполнены средой в процессе измерения;
- конструкция узла подсоединения преобразователя к трубопроводу при измерении жидкости не должна допускать скапливания воздуха в какой-либо части трубопровода;
  - преобразователь монтируется на горизонтальном участке трубопровода;
- эксплуатация преобразователя при измерении расхода жидкости на не полностью заполненных трубопроводах не допускается;
- запрещается устанавливать преобразователь на трубопроводах с давлением выше допустимого паспортного значения;
- после транспортирования при отрицательных температурах необходимо до монтажа выдержать преобразователь в упаковке в нормальных условиях в течение 3 часов;
- установка преобразователя в зоне расположения устройств, создающих вокруг себя мощное магнитное поле (например, силовых трансформаторов), не допускается;
  - запрещается выполнять какие-либо работы при включенном питании преобразователя;
- запрещается работать с приборами и электроинструментом без подключения их к шине защитного заземления;
- присоединение к преобразователю внешних электрических цепей следует производить только после окончания монтажных работ на трубопроводе, а их отсоединение до начала демонтажа;
- после установки кабелей в кабельные вводы и их подключения необходимо выполнить затяжку всех гаек в кабельных вводах для исключения попадания влаги в электронный блок расходомера;
  - неиспользуемые кабельные вводы должны быть заглушены;
- заземление преобразователя производится подсоединением провода заземления преобразователя к зажиму, отмеченному знаком заземления. Фланцы трубопровода между собой должны быть соединены заземляющим проводом.

По умолчанию преобразователи ЭВ-205 взрывозащищенных исполнений комплектуются двумя металлическими кабельными вводами для небронированных кабелей с внешним диаметром от 6 мм до 9 мм. При этом в кабельные вводы устанавливаются взрывозащищенные пробки. Преобразователи ЭВ-205 с исполнением без взрывозащиты комплектуются двумя пластиковыми кабельными вводами для небронированных кабелей с внешним диаметром от 6 мм до 13 мм.

По спецзаказу могут быть установлены кабельные вводы для кабелей с другим внешним диаметром или для бронированных кабелей (необходимо указать тип и диаметр кабеля при заказе).

Есть возможность применения кабельного ввода под металлорукав (необходимо указать типоразмер металлорукава при заказе).

При монтаже преобразователей с оптическим индикатором (исполнение СИО) рекомендуется устанавливать электронный блок под солнцезащитным козырьком для исключения ложных срабатываний оптических кнопок от прямых солнечных лучей.

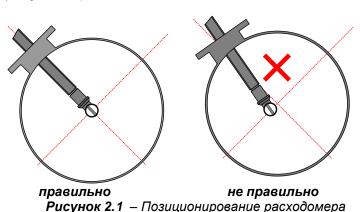
#### 2.2.2 Требования к монтажу, обеспечивающие заявленную точность

Для обеспечения заявленной производителем точности обязательным является выполнение требуемых длины входных и выходных прямолинейных участков. В зависимости от наличия сужений, расширений, изгибов труб, регулирующих механизмов или устройств, находящихся выше по потоку от места установки прибора, длины прямолинейных участков до и после преобразователя должны быть не менее величин, указанных в *таблице 2.1* Невыполнение требований ведет к нестабильности измерений и прибор не будет подтверждать свои метрологические характеристики.

Таблица 2.1 – Длины прямых участков для погружных преобразователей ЭВ-205

|                             | Длина прямого<br>участка после                                                                               |                                                                                                                                                                                                                  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Измерение в<br>точке 0,242R | измерение на<br>оси трубы                                                                                    | преобразователя<br>(Х*Ду)                                                                                                                                                                                        |
| 55 х Ду                     | 25 х Ду                                                                                                      | 5 х Ду                                                                                                                                                                                                           |
| 50 х Ду                     | 25 х Ду                                                                                                      | 5 х Ду                                                                                                                                                                                                           |
| 80 х Ду                     | 50 х Ду                                                                                                      | 5 х Ду                                                                                                                                                                                                           |
| 30 х Ду                     | 10 х Ду                                                                                                      | 5 х Ду                                                                                                                                                                                                           |
| 55 х Ду                     | 22 х Ду                                                                                                      | 5 х Ду                                                                                                                                                                                                           |
| 45 х Ду                     | 22 х Ду                                                                                                      | 5 х Ду                                                                                                                                                                                                           |
| 30 х Ду                     | 15 х Ду                                                                                                      | 5 х Ду                                                                                                                                                                                                           |
|                             | преобразова<br>Измерение в<br>точке 0,242R<br>55 х Ду<br>50 х Ду<br>80 х Ду<br>30 х Ду<br>55 х Ду<br>45 х Ду | точке 0,242R       оси трубы         55 x Ду       25 x Ду         50 x Ду       25 x Ду         80 x Ду       50 x Ду         30 x Ду       10 x Ду         55 x Ду       22 x Ду         45 x Ду       22 x Ду |

Примечание: Ду - условный диаметр трубопровода.


#### 2.2.3 Электромонтажные работы

Монтаж преобразователей с обеспечением взрывозащиты описаны в руководстве по эксплуатации на **«Электронный блок преобразователя расхода вихревого»** (см. <u>таблицу 1.7</u>).

#### 2.2.4 Требования к монтажу погружного преобразователя

При монтаже преобразователя на трубопроводе следует обеспечить выполнение следующих требований:

- направление стрелки около ручек на штанге преобразователя должно совпадать с направлением потока в трубопроводе; направление ручек на штанге должно максимально совпадать с осью трубопровода;
- в случае снятия ручек отверстия необходимо заглушить болтами М14;
- приварной патрубок и погружная штанга должны быть установлены перпендикулярно к поверхности трубопровода в месте установки преобразователя (см. *рис. 2.1*);
- вертикальная установка преобразователя (<u>рекомендуется</u>). В случае не вертикальной установки преобразователя угол отклонения погружной штанги от вертикали не должен превышать 90° (см. *рис. 2.2*).



**Рисунок 2.1** — Позиционирование расхооомера

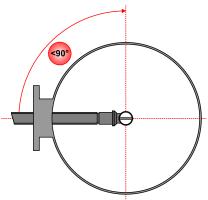



Рисунок 2.2 — Угол установки преобразователя

Датчик погружного преобразователя может быть установлен в центре трубопровода (R) или в точке средних скоростей потока (H=0,242R). Возможное положение датчика показано на *puc. 2.3* 

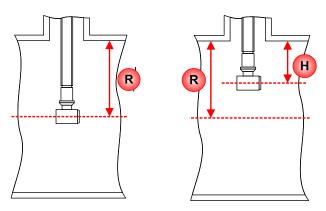


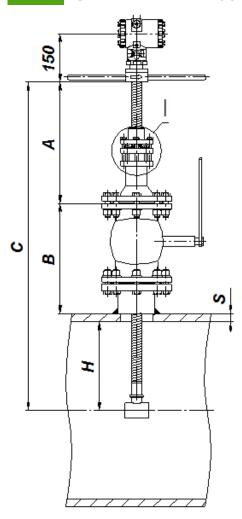

Рисунок 2.3 – Варианты расположения датчика

Датчик погружного преобразователя с исполнением по давлению 2,5 МПа устанавливается в центре трубопровода (**R**) для условного диаметра≤ 1000 мм и в точке средних скоростей (**H**) для условного диаметра> 1000 мм).

Датчик преобразователя с исполнением по давлению 1,6 МПа устанавливается в центре трубопровода (**R**) для условного диаметра < 800 мм и в точке средних скоростей (**H**) для условного диаметра ≥ 800 мм.

На установку в указанных местах настраиваются преобразователи при выпуске с производства.

В трубопроводах с условным диаметром от 800 до 1200 мм для преобразователя с исполнением по давлению 1,6 МПа датчик допускается также устанавливать в центр трубопровода. При этом необходимо в настройках прибора изменить место установки датчика с помощью программы **«ЭМИС-Интегратор»**.


Метрологическая точность погружных расходомеров обеспечивается качеством монтажа и качеством замеров внутреннего диаметра трубы. Датчик измеряет скорость потока и для получения расхода необходимо провести замеры по определению внутреннего диаметра, после чего значение фактического диаметра с помощью программы *«ЭМИС-Интегратор»* внести в память прибора.

Для обеспечения метрологической точности необходимо выдерживать длину прямых участков (см. *таблицу 2.2*).

При измерении скорости потока в середине потока важно знать коэффициент гидравлического трения трубы  $\lambda$ . В общем случае он равен 0,02. Значение коэффициента  $\lambda$  не должно превышать 0,06. Коэффициент зависит от вязкости и шероховатости стенок трубы. При вводе в память прибора измеряемой среды и ее температуры выбор коэффициента осуществляется автоматически.

Требования к точности положения датчика расхода в трубопроводе при расположении датчика по центру потока ±0,05R.

ВНИМАНИЕ! Для обеспечения герметичности при установке погружного расходомера и регулировке глубины погружения датчика расхода необходимо ознакомиться с рекомендациями по монтажу расходомера, приведенными в приложении Ж.



**Рисунок 2.4** Вычисление глубины погружения датчика

При измерении скорости в точке 0,242R необходимо обеспечить глубину установку датчика в потоке с точностью  $\pm 0,013R$ . При этом в этой точке измеряется фактическая средняя скорость потока.

Для правильного расположения чувствительного элемента внутри трубопровода для преобразователей с исполнением по давлению 1,6 МПа необходимо вычислить и контролировать размер **A** (см. *puc. 2.4*), соответствующий требуемой глубине погружения датчика:

$$A = C - B - H - S$$
, MM (2.3)

где: A – расстояние от торца фланца шарового крана или патрубка до торцевой поверхности вращаемой втулки (размер соответствующий глубине погружения);

В – расстояние от наружной поверхности трубы до фланца шарового крана или фланца патрубка;

С – расстояние от оси датчика скорости до торцевой поверхности вращаемой втулки;

H – глубина погружения датчика (R или 0,242R);

S – толщина стенки трубы.

Монтаж погружного преобразователя расхода 1,6 исполнением по давлению МПа может осуществлен без остановки потока в трубопроводе («горячая врезка»). Последовательность операций «горячей преобразователя погружного описана врезки» приложении Ж.

Для исполнений по давлению 2,5 МПа фланец преобразователя жестко закреплен на погружной штанге, таким образом, вращение и регулировка глубины погружения датчика невозможны. В связи с этим отсутствует шаровый кран и «горячая врезка» также невозможна.

#### 2.3 Использование

#### 2.3.1 Подготовка к работе

2.3.1.1 Перед первым включением электрического питания преобразователя и пуском его в эксплуатацию необходимо:

- проверить правильность монтажа преобразователя на трубопроводе;
- проверить параметры электрического питания преобразователя;
- проверить правильность заземления корпуса преобразователя;
- проверить правильность подключения внешних устройств.

2.3.1.2 Параметры преобразователя, указанные в паспорте на прибор:

- диапазон измерения расхода;
- серийный номер;
- сетевой адрес преобразователя в сети Modbus или HART;
- вид взрывозащиты;
- значение степени демпфирования показаний объёмного расхода выбирается из ряда целых чисел от 0 до 10 (по умолчанию установлено 4);
- измеряемая среда: жидкость, газ, пар;
- температурный диапазон измеряемой и окружающей среды;
- класс точности преобразователя;
- параметры выходных сигналов: значение расхода для 1000 Гц для частотного сигнала, цена импульса для импульсного сигнала, значение расхода для 20 мА для токового сигнала;
- К-фактор (для датчика расхода);
- номер версии программного обеспечения.

#### 2.3.2 Ввод в эксплуатацию

Ввод в эксплуатацию преобразователя оформляется актом.

При вводе преобразователя в эксплуатацию в паспорте необходимо сделать отметку с указанием даты ввода и заверить её подписью лица, ответственного за эксплуатацию приборов.

#### 3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание преобразователей взрывозащищенного исполнения должно проводиться в соответствии с ГОСТ 31610.17-2012 (IEC 60079-17:2002).

Преобразователь в процессе эксплуатации не требует специального технического обслуживания, кроме периодического осмотра с целью проверки условий эксплуатации.

Периодичность осмотра зависит от условий эксплуатации и определяется предприятием, ведущим техническое обслуживание.

Особое внимание необходимо уделять контролю технологических параметров измеряемой среды, в частности, давлению в трубопроводе, и не допускать режимов эксплуатации, способствующих возникновению явления кавитации, т.е. образованию в жидкости полостей, заполненных газом, паром или их смесью. Кавитационные пузырьки образуются, когда давление в потоке жидкости за преобразователем становится ниже некоторого критического значения (приблизительно равно давлению насыщенных паров этой жидкости при данной температуре). В п. 2.1.5 приведена формула расчета избыточного критического давления.

Несоблюдение условий эксплуатации может привести к выходу из строя преобразователя или погрешности измерений превышающей нормируемые параметры.

#### 4 ПОВЕРКА

Первичной поверке подвергаются преобразователи при выпуске из производства, прошедшие приемо-сдаточные испытания и принятые службой, отвечающей за качество, на соответствие требованиям ТУ 4213-017-14145564-2009.

Поверка преобразователей в объёме первичной поверки проводится также в следующих случаях:

- при хранении преобразователя перед вводом в эксплуатацию более 36 месяцев;
- после ремонта преобразователя с демонтажем с трубопровода;

Периодической поверке подлежат приборы, находящиеся в эксплуатации, и после ремонта. Интервал между поверками преобразователей – 4 (четыре) года.

Для погружных преобразователей поверке подвергается датчик расхода с условным диаметром проточной части 40 мм.

Поверка преобразователей проводится согласно Методике поверки ЭВ-200.000.000.000.00 МП с изменениями №2.

Примечание - внеочередная поверка проводится в процессе эксплуатации, если необходимо удостовериться в исправности преобразователя, при повреждении пломб или утрате документов, подтверждающих прохождение очередной поверки.

#### 5 ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОТКАЗОВ

Перечень возможных отказов (в т.ч. критических):

- потеря герметичности по отношению к внешней среде по корпусным деталям, связанная с разрушением;
- потеря герметичности по отношению к внешней среде по прокладочному соединению;
- потеря герметичности в разъемных соединениях;
- несоответствие требованиям таблицы 1.5.

К критериям предельного состояния расходомеров относят:

- достижение назначенных показателей;
- начальную стадию нарушения цельности корпусных деталей (потение, капельную течь);
- необратимое разрушение деталей, вызванное коррозией, эрозией и старением материалов;
- превышение предельно допустимых дефектов металла корпусных деталей и сварных швов;
- изменение (уменьшение) толщин стенок корпусных деталей до минимально допускаемых прочностным расчетом величин;
- изменение (уменьшение) размеров тела обтекания до минимально допускаемых расчетом величин погрешности:
- выход из строя сенсора расходомера;
- нарушение геометрии корпусных деталей свыше максимально допустимых отклонений.

Возможные ошибочные действия персонала, приводящие к отказу, инциденту или аварии. Для обеспечения безопасности работы запрещается:

- использовать арматуру для работы в условиях, не соответствующих указанным в паспорте;
- использовать гаечные ключи, большие по размеру, чем размеры крепежных деталей;
- производить работы по демонтажу, техническому обслуживанию и ремонту при наличии давления рабочей среды в клапане;

- производить подключение к электрическим цепям по схемам, не соответствующим руководству по эксплуатации;
- эксплуатировать расходомер при отсутствии эксплуатационной документации.

При инциденте, критическом отказе или аварии необходимо прекратить подачу рабочей среды на расходомер. Отключить расходомер от электрических цепей.

Эксплуатационные случаи, не признающиеся гарантийными, но не ограничиваясь:

- нарушены пломбы изготовителя;
- отсутствие паспорта преобразователя или в паспорте отсутствует отметка о вводе преобразователя в эксплуатацию, выполненная организацией, осуществившей ввод;
- механическое повреждение сенсора (отсутствие или деформация), тела обтекания (отсутствие, коррозия деформация или смещение), проточной части (коррозия, деформация, следы механического воздействия);
- разгерметизация (попадание измеряемой среды в стойку и (или) корпус электронного блока) проточной части вследствие нарушения правил эксплуатации и (или) применения в рабочих условиях, отличных от опросного листа и (или) технического задания в иной форме на изготовление и поставку (в частности, но не ограничиваясь, превышение допустимых значений температуры и давления);
- наличие в проточной части инородных предметов;
- деформация и отсутствие элементов и составных частей;
- наличие признаков и (или) последствий превышения предельных параметров напряжения и тока в электрических цепях электронных плат;
- наличие следов перегрева и (или) отсутствие компонентов электронных плат, а также токоведущих дорожек электронных плат;
- выход из строя электронных плат вследствие попадания газов и (или) воды и (или) иной жидкости через незатянутые кабельные вводы и крышки;
- самостоятельный ремонт, разборка и сборка, замена элементов, деталей и составных частей, а также внесение изменений в работу программного обеспечения преобразователя, изменение заводских настроек, выходящих за пределы заданного уровня доступа, самостоятельно (без согласования с заводом-изготовителем);
- применение на рабочей среде и (или) в рабочих условиях, отличающихся от указанных в опросном листе и (или) техническом задании в иной форме на изготовление и поставку оборудования без согласования с заводом-изготовителем.

#### 6 УПАКОВКА И ХРАНЕНИЕ

Упаковка преобразователей и дополнительных комплектующих к ним производится в фанерный ящик с деревянным каркасом, если не требуется северное исполнение. В этом случае применяется тара в соответствии с ГОСТ 15846.

Преобразователи и фланцы в ящике закрепляются при помощи деревянных брусков.

На упаковку во влагозащитном пакете крепится упаковочный лист, который содержит информацию о Покупателе, Поставщике, весе брутто, весе нетто, габаритах изделия.

В зависимости от вида (типа) Товара, требующего специального обращения (хрупкие, крупногабаритные, тяжеловесные, длинномерные и пр. грузы) наносится дополнительная маркировка («обращаться осторожно», «верх», «не бросать», «не кантовать» и пр.), а также другие обозначения.

Изделие может поставляться с дополнительной комплектацией (комплект монтажных частей, ЗИП, блоки питания, барьеры искрозащиты и т.д.) как в одной таре, так и в отдельных. При многоместной отправке на каждой таре присутствует указание о количестве мест и номере места.

Преобразователи после распаковывания должны храниться на стеллажах в закрытом помещении. Условия хранения в распакованном виде - 2 (C) по <u>ГОСТ 15150</u> при температуре окружающей среды от минус 50 до плюс 40 °C и относительной влажности воздуха до 95 % при 25 °C без конденсации влаги.

Помещать преобразователи один на другой не разрешается.

В зимнее время распаковывать преобразователи необходимо после выдержки в отапливаемом помещении в течение 3 ч.

Длительное хранение преобразователей рекомендуется производить в упаковке предприятия - изготовителя.

#### 7 ТРАНСПОРТИРОВАНИЕ

Преобразователи в транспортной упаковке предприятия-изготовителя транспортируются любым видом транспорта в соответствии с условиями 4 (Ж2) по <u>ГОСТ 15150</u> при температуре окружающей среды от минус 50 до плюс 50°C и относительной влажности воздуха до 100 % при 25°C.

Время пребывания преобразователя в условиях транспортирования не должно превышать одного месяца.

При погрузке, транспортировании и выгрузке преобразователей должны выполняться требования указанные на упаковке манипуляционных знаков.

При транспортировании должна быть обеспечена защита преобразователей от атмосферных осадков.

#### 8 УТИЛИЗАЦИЯ

Преобразователи не содержат вредных веществ и компонентов, представляющих опасность для здоровья людей и окружающей среды в процессе и после окончания срока службы и при утилизации.

Утилизации подлежат преобразователи, выработавшие ресурс и непригодные к дальнейшей эксплуатации (поврежденные, разбитые и т.п.).

Преобразователи, выработавшие ресурс, не подлежат размещению на полигоне ТБО.

Утилизация преобразователей производится специализированными организациями в порядке, установленном законодательством Российской Федерации.

После передачи на утилизацию и разборки преобразователей детали конструкции, годные для дальнейшего употребления, не содержащие следов коррозии и механических воздействий, допускается использовать в качестве запасных частей. Полезные компоненты преобразователей (черные металлы, цветные металлы, элементы микросхем, пластик ABS и пр.) направляются на вторичную переработку;

Электронные компоненты, извлеченные из преобразователей, дальнейшему использованию не подлежат.

Преобразователи поставляются потребителю в картонной, полимерной или деревянной таре. Упаковочные материалы передаются на утилизацию (вторичную переработку) специализированным организациям.

Утилизация преобразователя осуществляется отдельно по группам материалов: пластмассовые элементы, металлические элементы корпуса и крепежные элементы.

# 9 СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ

Преобразователи не содержат драгоценных металлов.

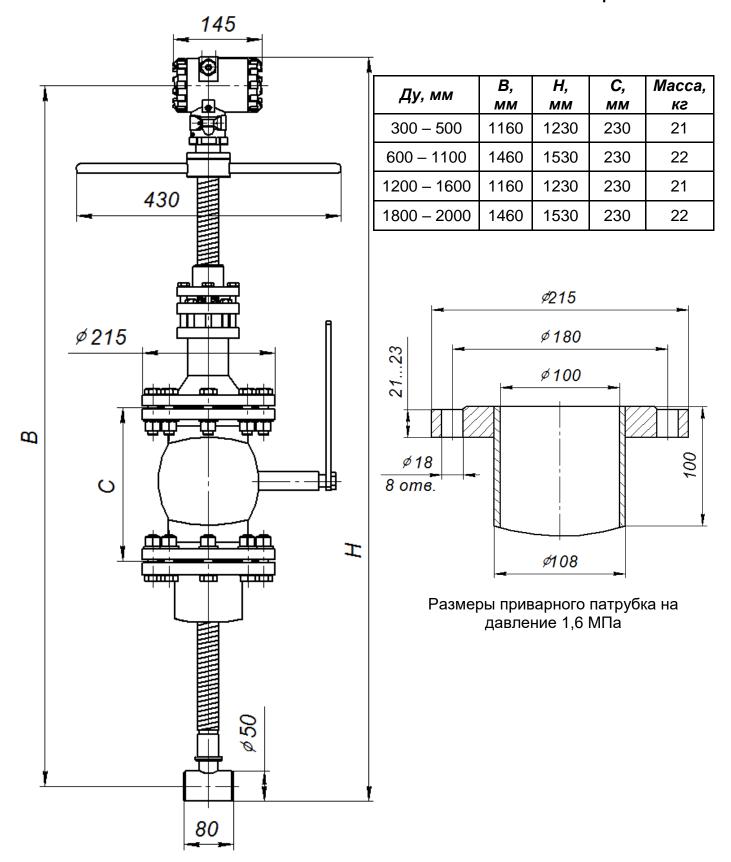
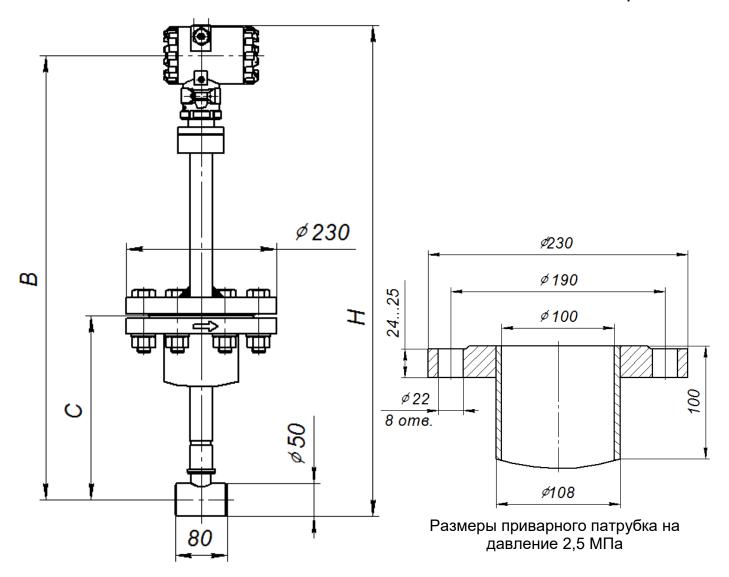
# Приложение А

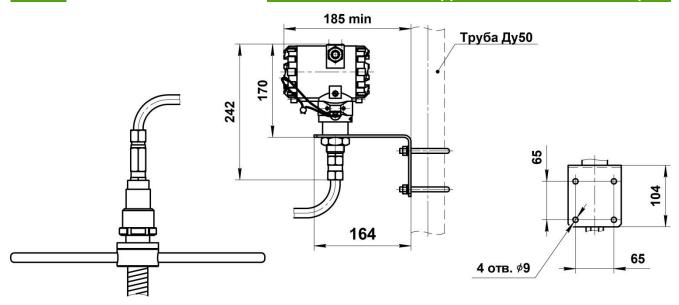
(справочное)

Перечень ссылочных документов

| Обозначение                                      | перечень ссылочных оокументов                                                                                                                                                                                        |  |  |  |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| документа                                        | Наименование                                                                                                                                                                                                         |  |  |  |  |  |
| <u>FOCT 10-88</u>                                | Нутромеры микрометрические. Технические условия                                                                                                                                                                      |  |  |  |  |  |
| <u>FOCT 26.010-80</u>                            | Средства измерений и автоматизации. Сигналы частотные электрические непрерывные входные и выходные                                                                                                                   |  |  |  |  |  |
| <u>FOCT 26.011-80</u>                            | Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные                                                                                                           |  |  |  |  |  |
| <u>FOCT 27.003-2016</u>                          | Надежность в технике. Состав и общие правила задания требований по надежности                                                                                                                                        |  |  |  |  |  |
| <u>FOCT 166-89</u>                               | Штангенциркули. Технические условия                                                                                                                                                                                  |  |  |  |  |  |
| <u>FOCT 6651-2009</u>                            | Государственная система обеспечения единства измерений (ГСИ). Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний                                          |  |  |  |  |  |
| <u>FOCT 7502-98</u>                              | Рулетки измерительные металлические. Технические условия                                                                                                                                                             |  |  |  |  |  |
| <u>FOCT 8.361-79</u>                             | Государственная система обеспечения единства измерений (ГСИ). Расход жидкости и газа. Методика выполнения измерений по скорости в одной точке сечения трубы                                                          |  |  |  |  |  |
| <u>FOCT 8732-78</u>                              | Трубы стальные бесшовные горячедеформированные. Сортамент                                                                                                                                                            |  |  |  |  |  |
| <u>FOCT 8734-75</u>                              | Трубы стальные бесшовные холоднодеформированные. Сортамент                                                                                                                                                           |  |  |  |  |  |
| <u>FOCT 11358-89</u>                             | Толщиномеры и стенкомеры индикаторные с ценой деления 0,01 и 0,1 мм. Технические условия                                                                                                                             |  |  |  |  |  |
| <u>ΓΟCT 14254-2015</u>                           | Степени защиты, обеспечиваемые оболочками (Код IP)                                                                                                                                                                   |  |  |  |  |  |
| <u>FOCT 15150-69</u>                             | Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды |  |  |  |  |  |
| <u>FOCT 16037-80</u>                             | Соединения сварные стальных трубопроводов. Основные типы, конструктивные элементы и размеры                                                                                                                          |  |  |  |  |  |
| <u>FOCT 28498-90</u>                             | Термометры жидкостные стеклянные. Общие технические требования.<br>Методы испытаний                                                                                                                                  |  |  |  |  |  |
| <u>ΓΟCT 22261-94</u>                             | Средства измерений электрических и магнитных величин. Общие технические условия                                                                                                                                      |  |  |  |  |  |
| <u>FOCT 31610.0-2014</u><br>(IEC 60079-0:2011)   | Взрывоопасные среды. Часть 0. Оборудование. Общие требования                                                                                                                                                         |  |  |  |  |  |
| <u>FOCT 31610.11-2014</u><br>(IEC 60079-11:2014) | Взрывоопасные среды. Часть 11. Оборудование с видом взрывозащиты<br>"искробезопасная электрическая цепь "i"                                                                                                          |  |  |  |  |  |
| <u>FOCT 31610.17-2012</u><br>(IEC 60079-17:2002) | Электрооборудование для взрывоопасных газовых сред. Часть 17. Проверка и техническое обслуживание электроустановок во взрывоопасных зонах (кроме подземных выработок)                                                |  |  |  |  |  |
| FOCT 33259-2015                                  | Фланцы арматуры, соединительных частей и трубопроводов на номинальное давление до PN 250                                                                                                                             |  |  |  |  |  |
| <u>FOCT P 50648-94</u>                           | Совместимость технических средств электромагнитная. Устойчивость к магнитному полю промышленной частоты. Технические требования и методы испытаний                                                                   |  |  |  |  |  |
| <u>FOCT P 52931-2008</u>                         | Приборы контроля и регулирования технологических процессов. Общие технические условия                                                                                                                                |  |  |  |  |  |
| <u>ΓΟCT IEC 60079-1-2011</u>                     | Взрывоопасные среды. Часть 1. Оборудование с видом взрывозащиты<br>"взрывонепроницаемые оболочки "d"                                                                                                                 |  |  |  |  |  |
| OCT 37.001.031-72                                | Затяжка резьбовых соединений                                                                                                                                                                                         |  |  |  |  |  |
| <u>ПР 50.2.104-09</u>                            | ГСИ. Порядок проведения испытаний стандартных образцов или средств измерений в целях утверждения типа                                                                                                                |  |  |  |  |  |

# Приложение Б



Рисунок Б.1 – Размеры погружного преобразователя на давление 1,6 МПа

Приложение Б



| Ду, | В,  | C,  | Н,  | Mac-  | Ду,  | В,   | C,  | Н,   | Мас-  | Ду,  | В,  | C,  | Н,  | Мас-  |
|-----|-----|-----|-----|-------|------|------|-----|------|-------|------|-----|-----|-----|-------|
| MM  | ММ  | MM  | ММ  | са,кг | MM   | MM   | ММ  | MM   | са,кг | ММ   | ММ  | MM  | ММ  | са,кг |
| 300 |     | 265 |     |       | 600  |      | 415 |      |       | 1200 |     | 250 |     |       |
| 350 |     | 290 |     |       | 700  |      | 460 |      |       | 1400 |     | 270 |     |       |
| 400 | 740 | 315 | 810 | 19    | 800  | 1040 | 510 | 1110 | 20    | 1600 | 740 | 300 | 810 | 19    |
| 450 |     | 340 |     |       | 900  |      | 560 |      |       | 1800 |     | 320 |     |       |
| 500 |     | 365 |     |       | 1000 |      | 610 |      |       | 2000 |     | 345 |     |       |

Рисунок Б.2 – Размеры погружного преобразователя на давление 2,5 МПа



**Рисунок Б.3** – Размеры погружного преобразователя дистанционного исполнения Остальные размеры см. **Рис.Б.1-Б.2** 

#### Приложение В

(справочное)

# Комплект монтажных частей (КМЧ)

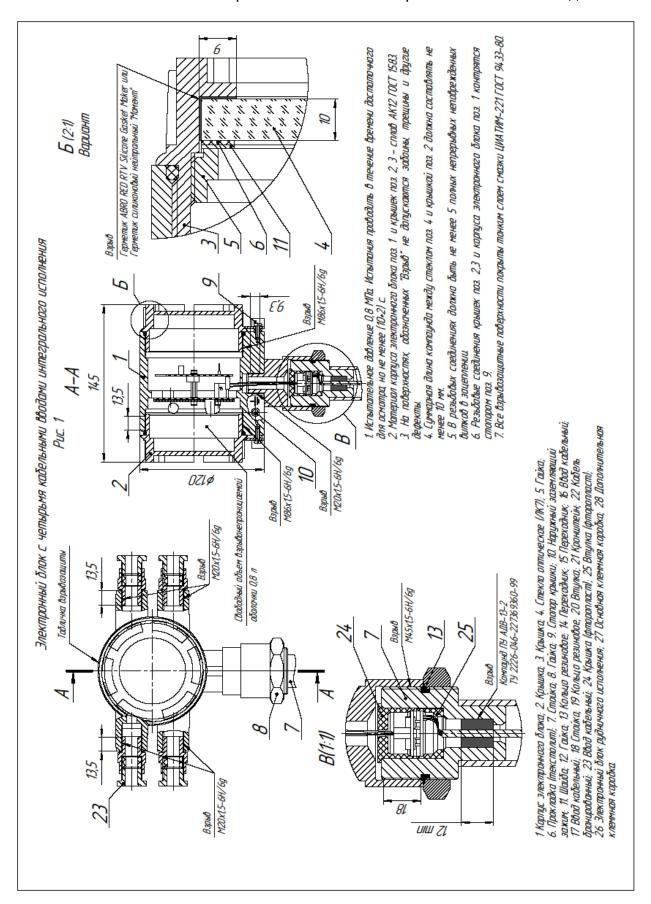
Таблица В.1 Крепежные детали для погружных преобразователей ЭВ-205

| Давление, | Шаровый | Болт             | Гайка             | Ко    | личество, | шт.       |
|-----------|---------|------------------|-------------------|-------|-----------|-----------|
| МПа       | кран    | <u>ГОСТ 7798</u> | <u>ГОСТ 9064</u>  | Болты | Гайки     | Прокладки |
| 4.6       | нет     | M16x75           | MAGYZE ANAG (COA) | 8     | 8         | 1         |
| 1,6       | есть    | IVI TOX / S      | AM16 (S24)        | 16    | 16        | 2         |
| 2,5       | нет     | M20x90           | AM20 (S30)        | 8     | 8         | 1         |

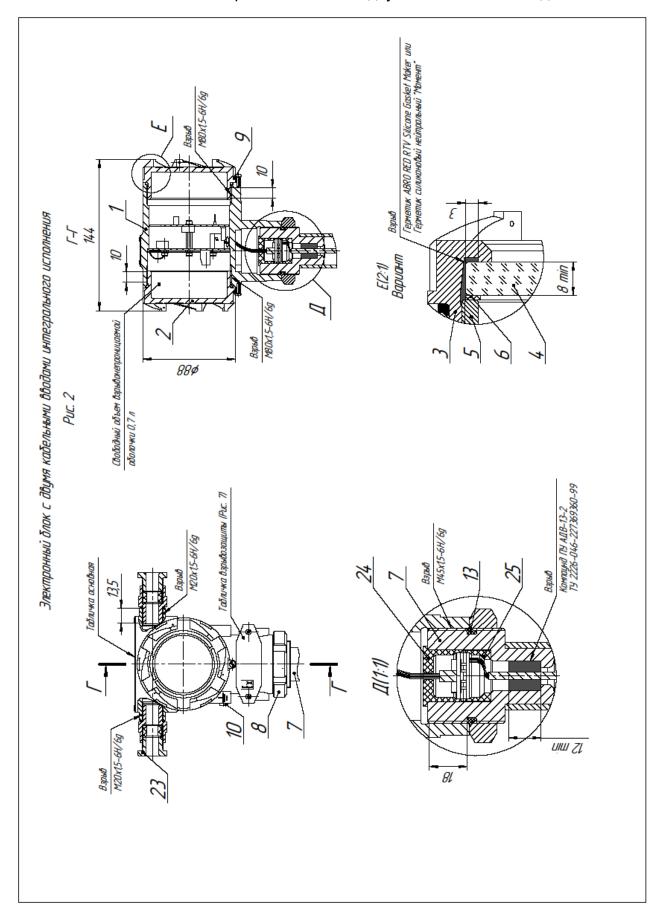
Примечание: Количество шайб равно удвоенному количеству гаек.

.

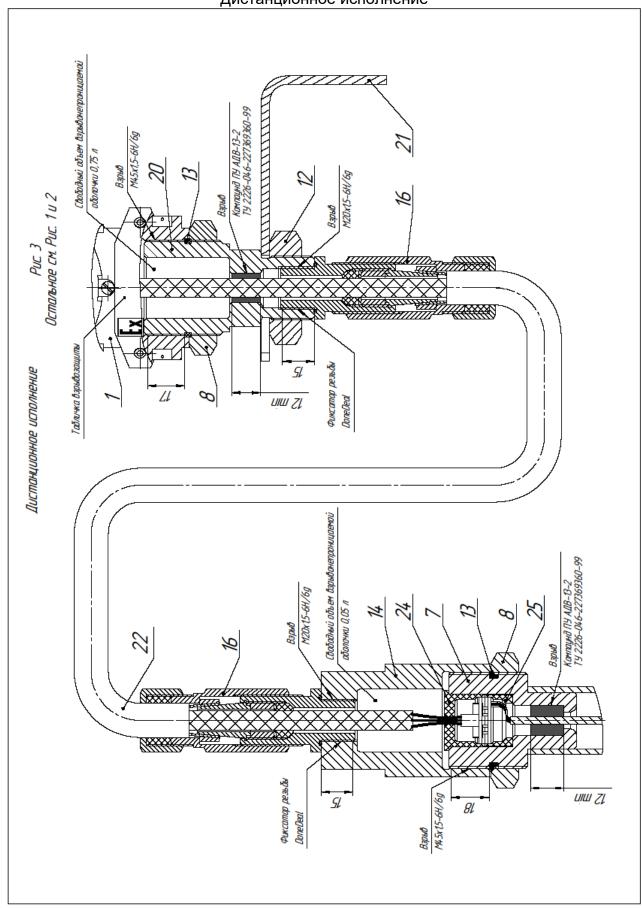
В КМЧ входит прокладка плоская паронитовая по ГОСТ 15180-86


ВНИМАНИЕ! Шпильки и гайки, входящие в состав КМЧ и имеющие защитное цинковое покрытие, могут иметь одинаковую твердость в соответствии с СТ ЦКБА 012-2015.

# Приложение Г


(обязательное)

# Чертеж средств обеспечения взрывозащиты преобразователей


Исполнение с электронным блоком с четырьмя кабельными вводами



# Исполнение с электронным блоком с двумя кабельными вводами



Дистанционное исполнение



#### Приложение Д

(обязательное)

# Перечень средств измерений, используемых при поверке

**Таблица Д.1** - Перечень средств измерений и вспомогательного оборудования, используемого при определении погрешности преобразователей на расходомерной установке

| Наименование                                             | Тип                                          | Технические характеристики                                                                                                                                                     |
|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Термометр ртутный<br>стеклянный лабораторный          | ТЛ<br>ГОСТ 28498                             | Пределы измерения 0 – 55 °C, цена деления<br>шкалы 0,1 °C                                                                                                                      |
| 2. Источник питания постоянного тока – 2 шт.             | Б5-45<br>ЕЭ3.233.219 ТУ                      | Верхний предел напряжения постоянного тока 49,9 В, ток до 100 мА.                                                                                                              |
| 3. Частотомер электронно-<br>счетный                     | Ч3-88 по ТУ ВҮ<br>100039847.076-2006         | диапазон частот входных сигналов от 0,1 Гц до<br>200 МГц                                                                                                                       |
| 4.Секундомер                                             | СТЦ-1<br>ТУ25-07.1353-77                     | Погрешность измерения ± 0,1 секунд.                                                                                                                                            |
| 5. Персональный компьютер                                |                                              | Персональный компьютер с установленной ОС<br>Windows 95/98/2000, программой «ЭМИС<br>Интегратор» и наличием свободного СОМ –<br>порта.                                         |
| 6. Поверочная установка                                  | УПСЖ 100/ВМ<br>ТУ 4381-001-<br>55749794-2002 | Диапазон расхода от 0,03 до 100 м <sup>3</sup> /ч, основная относительная погрешность измерения методом сличения не более ±0,25 %, объёмно-весовым методом – не более ±0,05 %. |
| 7. Установка поверочная расходомерная для счетчиков газа | УПСГ                                         | Диапазон расхода от 1 до 4000 м $^3$ /ч. Основная относительная погрешность при измерении объёма воздуха не более $\pm$ 0,35 %.                                                |

Примечание - Допускается использовать средства поверки, не предусмотренные настоящим перечнем, при условии, что их технические и метрологические характеристики не уступают указанным. Средства измерения должны быть поверены и иметь отметки в формулярах или паспортах.

Приложение Д

**Таблица Д.2** - Перечень средств измерений и вспомогательного оборудования, используемого при определении погрешности преобразователей имитационным методом

| Наименование                                       | Тип                                  | Технические характеристики                                                                                                                            |
|----------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Термометр ртутный<br>стеклянный<br>лабораторный | ТЛ<br>ГОСТ 28498                     | Пределы измерения 0 – 55 °C, цена деления<br>шкалы 0,1 °C                                                                                             |
| 2. Источник питания постоянного тока               | Б5-44<br>ТУ 3.233.219                | Верхний предел напряжения постоянного тока 49,9 В, ток до 100 мА.                                                                                     |
| 3. Частотомер<br>электронно-счетный                | Ч3-88 по ТУ ВҮ<br>100039847.076-2006 | диапазон частот входных сигналов от 0,1 Гц до 200 МГц                                                                                                 |
| 4.Секундомер                                       | СТЦ-1<br>ТУ25-07.1353-77             | Погрешность измерения ± 0,1 секунд.                                                                                                                   |
| 5.Микрометры рычажные                              | 0-25 и 25-50<br>ТУ 2-034-227-87      | Погрешность измерения не более ± 0,01 %                                                                                                               |
| 6.Штангенциркуль<br>электронный                    | ЩЦЦ-150 <u>ГОСТ 166</u>              | Погрешность измерения не более ± 0,03 %                                                                                                               |
| 7.Генератор сигналов                               | Г6-27<br><u>ГОСТ 22261</u>           | Диапазон частот 0,3Гц3 МГц,<br>стабильность не менее 0,05 %                                                                                           |
| 8.Вольтметр цифровой                               | B7-65/5                              | Пределы измерений от (0-0,05) до 1000 В, класс точности 0,02 % + 5 ед.мл. разряда.                                                                    |
| 9.Магазин сопротивлений                            | P4831                                | Сопротивление до 1000 Ом, относительная погрешность задания сопротивления не более ± 0,05 %.                                                          |
| 10.Персональный<br>компьютер                       | ПК -<br>IBM совместимый              | Компьютер с ОС Windows 95/98/2000/XP/Vista/7 и установленной программой «ЭМИС-Интегратор» и наличием свободного СОМ или USB порта и линейного выхода. |
| 11.Осциллограф                                     | С1-117/1<br>ТГ2.044.016ТУ            | Диапазон не менее 100 кГц,<br>чувствительность не менее 10 mV/дел.                                                                                    |
| 12. Преобразователь<br>интерфейса RS485 / USB      | ЭМИС-СИСТЕМА 750                     |                                                                                                                                                       |
| 13.Комплект кабелей для имитационной поверки       | ЭВ200.КИП                            |                                                                                                                                                       |

Примечание - Допускается использовать средства поверки, не предусмотренные настоящим перечнем, при условии, что их технические и метрологические характеристики не уступают указанным. Средства измерения должны быть поверены и иметь отметки в формулярах или паспортах.

# Приложение Е

(обязательное)

# Настройка погружного преобразователя расхода согласно условиям применения

Для настройки погружного преобразователя на фактическое значение внутреннего диаметра трубопровода необходимо либо перенастроить сам преобразователь с помощью программы «ЭМИС-Интегратор» (одноразовая операция), либо пересчитать значение цены импульса на частотно-импульсном выходе преобразователя и значение максимального расхода, которому соответствует верхний предел токового выходного сигнала преобразователя. Для этого необходимо установить бит 10 регистра 40014 (включение погружного режима), рассчитать значение поправочного коэффициента для приведения расхода датчика к расходу при фактическом диаметре трубопровода. Этот расчет можно также выполнить при помощи программы «ЭМИС-Интегратор», не внося изменения в преобразователь.

Корректировка цены импульса Фактическое значение цены импульса  $\mathbf{m}_{\mathbf{\phi}}$  преобразователя рассчитывается по формуле

$$\mathbf{m}_{\mathbf{d}} = \mathbf{m} * \mathbf{S}, \tag{E.1}$$

где **m** – значение цены импульса датчика, указанное в паспорте преобразователя, л/имп;

**S** – поправочный коэффициент согласно формуле (E.3).

Корректировка верхнего предела токового выходного сигнала

Фактическое значение расхода **Qнаиб.ф**, которому соответствует верхний предел токового выходного сигнала преобразователя, рассчитывается по формуле

Qнаиб.
$$\phi$$
 = Qнаиб \* S, (E.2)

где **Qнаиб** – значение расхода датчика, которому соответствует 20мА токового выходного сигнала, указанное в паспорте преобразователя, м<sup>3</sup>/ч;

S – поправочный коэффициент согласно формуле (Е.3).

Расчет поправочного коэффициента Поправочный коэффициент **S** для фактического значения внутреннего диаметра трубопровода вычисляется по формуле

$$S = (D_{to}/d)^{2} * Kv * Kn * K3,$$
 (E.3)

где  $\mathbf{D}_{\mathbf{d}}$  – фактическое значение внутреннего диаметра трубопровода, мм;

**d** – значение внутреннего диаметра датчика расхода в месте установки тела обтекания. **d** = 40 мм:

**Kv** – коэффициент, зависящий от глубины погружения датчика расхода. Kv=1 для установки датчика в точке средней скорости (0,242R). Значение коэффициента Kv для установки датчика на оси трубопровода определяется методом интерполяции по данным **таблицы Л.4**. В общем случае значение Kv для установки датчика на оси трубопровода можно принять равным 0,84;

**Кп** – коэффициент перехода, учитывающий изменение К-фактора датчика расхода при погружной установке датчика относительно К-фактора, полученного при градуировке датчика на стенде. Коэффициент **Кп** выбирается по *таблице Е.1* (значения определены эмпирическим путем);

**Таблица Е.1** – Коэффициент перехода **Кп** 

| Точка измерения         | Коэффициент перехода Кп |
|-------------------------|-------------------------|
| Центр                   | 1,65                    |
| Точка средних скоростей | 1,42                    |

**Кз** – коэффициент затенения, учитывающий влияние погружной штанги. Коэффициент **Кз** определяется по *таблице E.2*.

| Таблица Е.2 – | Коэффициент | затенения <b>К</b> з | 3 |
|---------------|-------------|----------------------|---|
|---------------|-------------|----------------------|---|

| Ду,<br>мм      | 300   | 350   | 400   | 450   | 500   | 600   | 700   | 800   | 900   |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| K <sub>3</sub> | 0,930 | 0,932 | 0,936 | 0,938 | 0,940 | 0,944 | 0,948 | 0,952 | 0,956 |
| Ду,<br>мм      | 1000  | 1100  | 1200  | 1300  | 1400  | 1500  | 1600  | 1800  | 2000  |
| K <sub>3</sub> | 0,960 | 0,963 | 0,967 | 0,970 | 0,973 | 0,976 | 0,978 | 0,981 | 0,985 |

Фактическое значение внутреннего диаметра трубопровода рассчитывается по формуле

$$D_{\phi} = LH / 3,1416 - 2*s$$
, (E.4)

где **Lн** – длина окружности трубопровода, усредненная по результатам четырех измерений, мм;

**s** – толщина стенки трубопровода, усредненная по результатам четырех измерений, мм.

При определении внутреннего диаметра трубопровода рекомендуется использовать средства измерений, указанные в **таблице Е.3** или аналогичные.

**Таблица Е.3** - Перечень средств измерений, используемых при определении внутреннего диаметра трубопровода

| опреселении внутпреннего сиаметра трусстровоса       |                                                          |  |  |  |  |
|------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| Наименование                                         | Требуемые технические<br>характеристики                  |  |  |  |  |
| 1. Рулетка металлическая<br>Р10H2K, ГОСТ 7502        | Предел измерений 10 м, цена деления 0,5 мм               |  |  |  |  |
| 2. Толщиномер ультразвуковой<br>УТ-93П, ГОСТ Р 55614 | Диапазон измерений 330 мм, относительная погрешность 3 % |  |  |  |  |

Определение коэффициента **Kv** производится в следующей последовательности:

• определить среднюю скорость потока **Vcp**, м/с, через сечение трубопровода для среднего расхода из диапазона измерения преобразователя

Vcp = 2000 \* (Qнаим + Qнаиб) / (
$$D_{\phi}^2$$
 \* 3,6 \* 3,1416), (E.5)

где **Qнаим (Qнаиб)** - наименьшее (наибольшее) значение расхода преобразователя согласно *таблице 1.3*, м<sup>3</sup>/ч;

 ${\bf D}_{\bf \Phi}$  – фактическое значение внутреннего диаметра трубопровода, мм.

• рассчитать число Рейнольдса **Re** 

Re = 
$$0.001 * D_{db} * Vcp / v$$
, (E.6)

где  $\mathbf{D_{\phi}}$  – фактическое значение внутреннего диаметра трубопровода, мм;  $\mathbf{Vcp}$  – средняя скорость потока, м/с;

 $\nu$  – кинематическая вязкость измеряемой среды для рабочего диапазона температур,  $m^2/c$ .

ullet рассчитать коэффициент гидравлического трения  $\lambda$  по формуле Альтшуля

$$\lambda = 0.11 \cdot \left(\frac{R_{\text{III}}}{D_{\phi}} + \frac{68}{\text{Re}}\right)^{0.25},$$
 (E.7)

где  $R_{\rm m}$  - эквивалентная шероховатость внутренней поверхности трубопровода, мм (определяется экспериментально или по <u>ГОСТ 8.586.1</u>);

 ${\bf D}_{\bf \Phi}$  – фактическое значение внутреннего диаметра трубопровода, мм;

**Re** – число Рейнольдса.

Допускается определение коэффициента гидравлического трения  $\lambda$  по номограмме Колбрука-Уайта.

Значение коэффициента **Kv** определяется методом интерполяции по данным **таблицы E.4** для рассчитанного значения коэффициента гидравлического трения  $\lambda$  (ГОСТ 8.361).

| <b>Таблица Е.4</b> – Коэффициент погружения <b>Кv</b> |       |       |       |       |       |       |  |
|-------------------------------------------------------|-------|-------|-------|-------|-------|-------|--|
| λ                                                     | 0,01  | 0,02  | 0,03  | 0,04  | 0,05  | 0,06  |  |
| Κv                                                    | 0,875 | 0,840 | 0,800 | 0,770 | 0,740 | 0,713 |  |

#### Приложение Ж

(обязательное)

# Монтаж погружного преобразователя расхода без остановки потока в трубопроводе (для преобразователей с исполнением по давлению 1,6 МПа)

трубопроводе

Таблица Ж.1 – Порядок монтажа погружного преобразователя расхода без остановки потока в Рисунок Операция 1. Приварить патрубок погружного расходомера к трубопроводу. Сварка по ГОСТ 16037. Ось патрубка должна располагаться перпендикулярно и симметрично относительно оси трубопровода. Отклонение оси патрубка от нормали к поверхности Μαχ MAX трубопровода в месте присоединения патрубка в продольном и поперечном направлениях не должно превышать 3°. 2. К патрубку болтами прикрепить шаровый кран. строительную длину не более 8 болтов М16х70 затянуть

- Шаровый кран должен иметь 230 мм. Между фланцами патрубка и шарового крана поместить прокладку.
- согласно схеме с моментом затяжки Мкр от 88,25 Н\*м (9 кгс\*м) до 107,87 Н\*м (11 кгс\*м). Технические требования к затяжке по ОСТ 37.001.031-72.

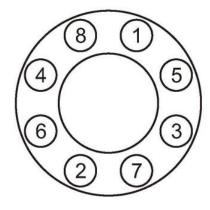
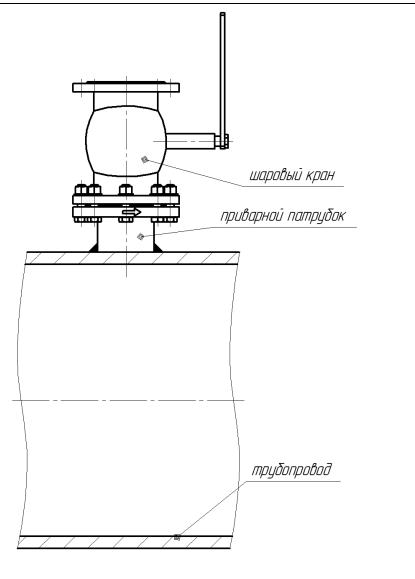
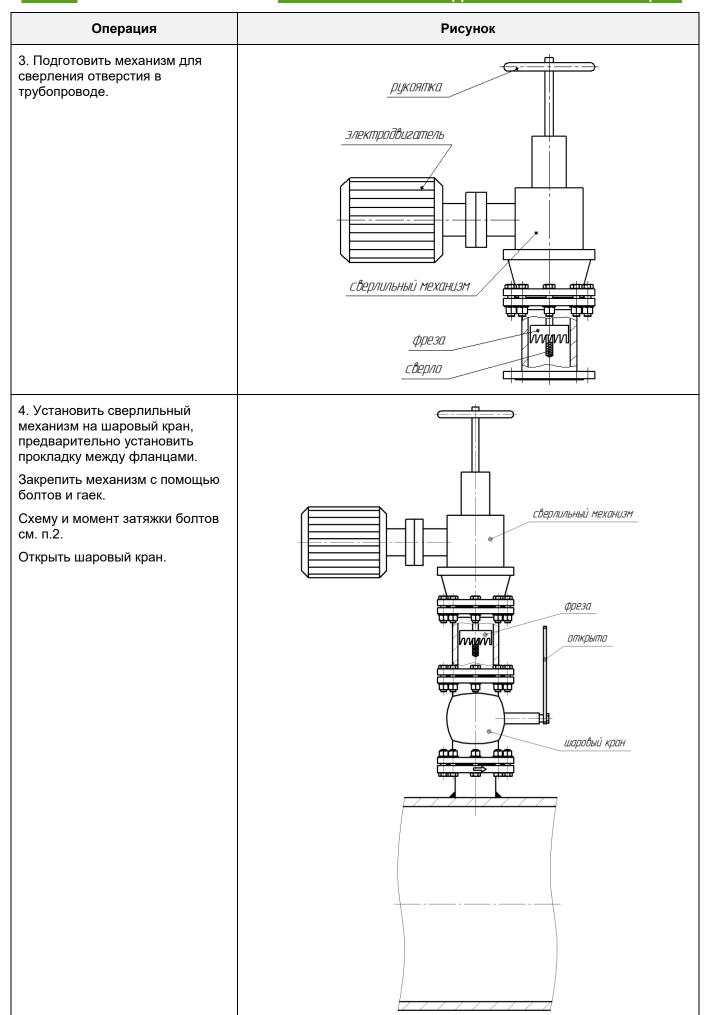
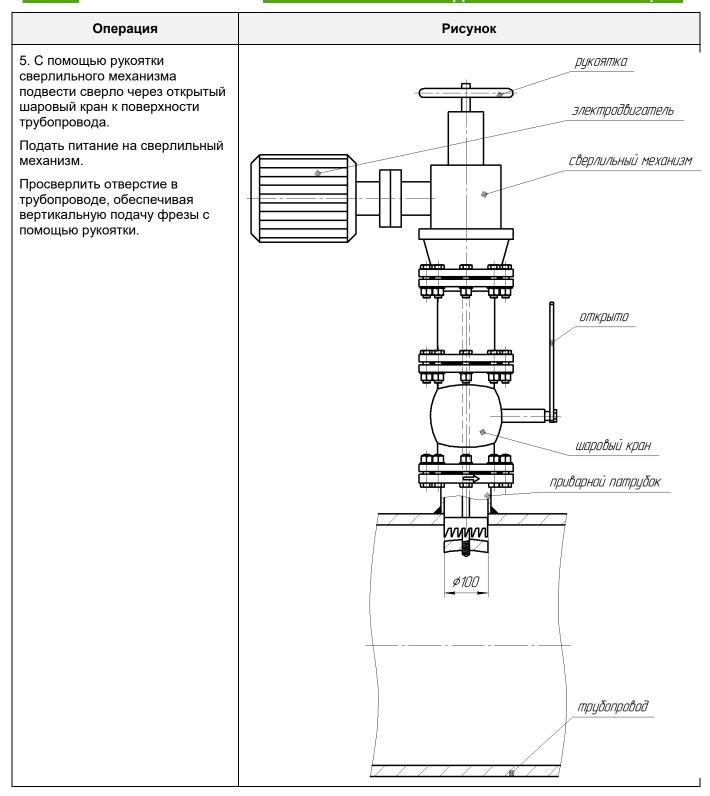
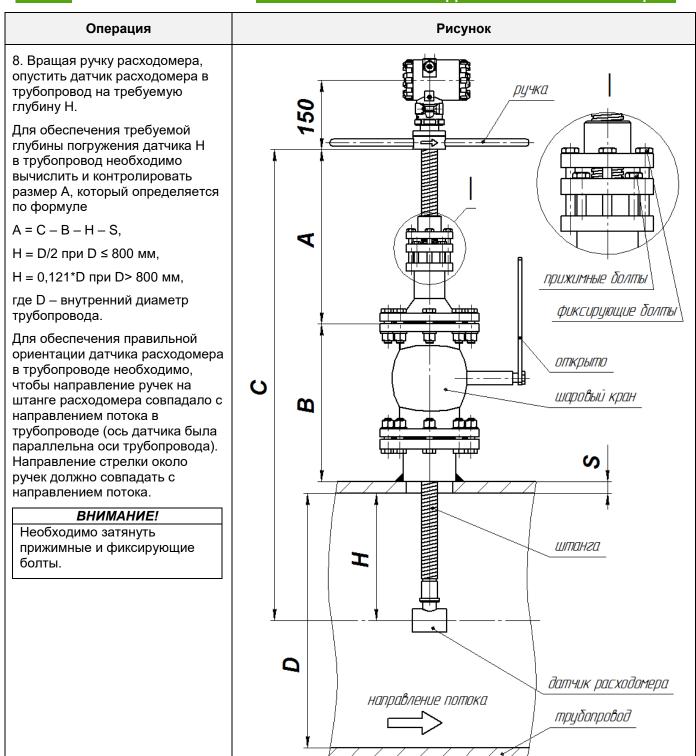






Схема затяжки болтов








# РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭМИС-ВИХРЬ 200 Операция Рисунок 6. С помощью рукоятки поднять *ЗАКРЫТО* фрезу с вырезанным участком поверхности трубопровода выше шарового крана. шаровый кран Закрыть шаровый кран. Отключить сверлильный приварной патрубок механизм и снять его с шарового крана. трубопровод 7. Присоединить ручки к штанге расходомера. ручка Ослабить фиксирующие и прижимные болты для обеспечения возможности вращения штанги. Вращая ручки на штанге, поднять датчик расходомера в крайнее верхнее положение. Затянуть прижимные болты для обеспечения герметичности. прижимные болты Присоединить погружной фиксирующие болты расходомер к шаровому крану с помощью болтов и гаек. Между фланцем шарового крана и открыто фланцем расходомера поместить шаровый кран новую прокладку. ш Схему и момент затяжки болтов см. п.2. Плавно открыть шаровый кран.

штанга

направление потока

датчик расходомера

трубопровод



#### Порядок демонтажа ЭВ205:

- 1. Очистить от загрязнений резьбовую штангу расходомера;
- 2. Ослабить фиксирующие болты для обеспечения возможности вращения штанги с сохранением герметичности (см. п.7 табл. М.1);
- 3. Вращая ручку расходомера, поднять датчик расходомера в трубопроводе в верхнее положение (выше задвижки шарового крана);
- 4. Плавно закрыть шаровый кран;
- 5. Открутить прижимающие расходомер к шаровому крану болты и гайки (схему затяжки см. п.7 табл. M.1);
- 6. Отсоединить расходомер, снять фланцевую прокладку.

#### Приложение И

(обязательное)

# Методика выполнения измерений

#### 1. Область применения

Настоящее приложение описывает методику выполнения измерений объёма (массы) и объёмного (массового) расхода жидкостей, газов (природного газа, попутного нефтяного газа, кислорода, воздуха и др. газов), насыщенного и перегретого пара с помощью преобразователя расхода вихревого ЭМИС-ВИХРЬ 200 модификации ЭВ-205. Методика предназначена для применения преобразователя на коммерческих и технологических узлах измерений.

#### 2. Нормативные ссылки

В настоящем приложении использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.586.1-2005 Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования.

ГОСТ 15528-86 Средства измерений расхода, объема или массы протекающих жидкости и газа.

ГОСТ Р 8.563-2009 Государственная система обеспечения единства измерений. Методики (методы) измерений.

ГОСТ Р 8.736-2011 Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения.

ГОСТ Р 8.740-2023 Государственная система обеспечения единства измерений (ГСИ). Расход и объем газа. Методика (метод) измерений с применением турбинных, ротационных и вихревых расходомеров и счетчиков.

РМГ 29-2013 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения.

#### 3. Термины и определения

В настоящей методике применимы термины по ГОСТ 15528, ГОСТ 8.586.1, ГОСТ Р 8.740-2023, РМГ 29-2013, а также следующие термины с соответствующими определениями:

- 3.1 Преобразователь (расходомер): Преобразователь расхода вихревой ЭМИС-ВИХРЬ 200 модификации ЭВ-205.
- 3.2 Проточная часть (первичный преобразователь): Часть расходомера, состоящая из полого цилиндра с установленными внутри него телом обтекания и сенсором.
- 3.3 Сенсор: Чувствительный элемент, преобразующий пульсации давления измеряемой среды в электрические сигналы.
- 3.4 Электронный блок: Часть расходомера, предназначенная для управления расходомером и обработки сигналов, поступающих от проточной части, а также для отображения и передачи результатов измерений.
- 3.5 Изготовитель: Организация, проектирующая, изготавливающая, продающая и поставляющая расходомер ЗАО «ЭМИС»
  - 3.6 Пользователь: Организация, эксплуатирующая расходомер.
- 3.7 Измерительный трубопровод (ИТ): Участок трубопровода с установленным расходомером, предназначенным для учета жидкости или газа.
- 3.8 Вставка монтажная: Отрезок трубы с фланцами или фитингами, имеющий одинаковые габаритно-присоединительные размеры с расходомером, вместо которого вставка монтируется на ИТ при необходимости.
- 3.9 Отсечка малого расхода: Значение расхода, задаваемое в расходомере, ниже которого расход и приращение массы по показаниям расходомера равны нулю.
  - 3.10 Рабочие условия: Параметры потока и среды в месте размещения расходомера.
- 3.11 Измеряемая среда: жидкость, газ или пар, находящиеся в однофазном состоянии, протекающие через ИТ, в котором установлен расходомер.
- 3.12 Объемное газосодержание: Отношение объемного расхода (объема) газовой фазы к объемному расходу (объему) газожидкостной смеси.
- 3.13 Узел учета: Комплект средств измерений и устройств, обеспечивающий учет расхода и количества среды, а также, при необходимости, определение ее показателей качества.
- 3.14 Узел коммерческого учета: Узел учета, предназначенный для проведения взаимных расчетов между продавцом и покупателем.
- 3.15 Узел хозрасчетного учета: Узел учета, предназначенный для проведения оценки экономической деятельности внутри организации пользователя расходомера.
- 3.16 Узел технологического учета: Узел учета, предназначенный для измерения расхода и количества среды в технологических целях внутри организации пользователя расходомера.
- 3.17 Условно постоянное значение параметра: Значение параметра, принимаемое в качестве постоянного на определенный период времени (например, на сутки, неделю, месяц).

- 3.18 Контроль метрологических характеристик средства измерений: Сличение в период между поверками показаний рабочего и контрольного средств измерений с целью установления пригодности рабочего средства измерения к дальнейшей эксплуатации.
  - 4. Обозначения.

Основные условные обозначения, применяемые в приложении, приведены в таблице И.1.

Таблица И.1 - Основные условные обозначения

| Условное<br>обозначение | Величина                                                | Единицы измерения                              |  |
|-------------------------|---------------------------------------------------------|------------------------------------------------|--|
| V                       | Значение контролируемого параметра                      | единица измерения<br>контролируемого параметра |  |
| f                       | Частота выходного сигнала на частотно-импульсном выходе | Гц                                             |  |
| W                       | Цена импульса                                           | л/имп (кг/имп)                                 |  |
| N                       | Количество импульсов                                    | -                                              |  |
| I                       | Значение тока на токовом выходе                         | мА                                             |  |
| δ                       | Относительная погрешность                               | %                                              |  |

- 5. Метод измерений
- 5.1 Метод измерений основан на измерении частоты вихрей, образующихся в потоке измеряемой среды в проточной части за телом обтекания.
  - 5.2 Расходомер измеряет объёмный расход и объём жидкостей, газов и пара.
- 5.3 Расходомер вычисляет массу, массовый расход, плотность в рабочих условиях, а также расход (объем), приведенный к стандартным условиям.
  - 6. Требования к безопасности.
- 6.1 К проведению монтажа и выполнению измерений допускаются лица, изучившие эксплуатационную документацию на расходомер и вспомогательное оборудование, прошедшие инструктаж по технике безопасности, получившие допуск к самостоятельной работе, знающие требования нормативных документов.
- 6.2 Перед началом работ необходимо проверить соответствие расходомера эксплуатационной документации, наличие и целостность маркировок взрывозащиты, крепежных элементов, целостность оболочек и корпусов расходомера.
- 6.3 При монтаже и эксплуатации расходомера должны соблюдаться требования промышленной безопасности, охраны труда, взрывобезопасности, пожарной безопасности и санитарнотехнических правил согласно действующему законодательству.
- 6.4 Установка и демонтаж оборудования на ИТ, проведение ремонтных работ должны производиться только на разгруженных по давлению ИТ. ИТ, в которых может содержаться опасный газ должны быть предварительно продуты воздухом или инертным газом.
- 6.5 Руководство по эксплуатации расходомера должно быть доступно обслуживающему персоналу.
  - 7. Требования к персоналу
- 7.1 К подготовке и выполнению измерений, обработке их результатов допускаются лица не моложе 18 лет, прошедшие целевое обучение профессии, инструктаж на рабочем месте, инструктаж по охране труда, технике безопасности, пожарной безопасности, проверку знаний и медицинский осмотр.
- 7.2 Обслуживающий персонал должен быть знаком с содержанием настоящего руководства по эксплуатации.
  - 8. Методика выполнения измерения расхода и количества жидкостей и газов.
  - 8.1 Условия выполнения измерений.
  - 8.1.1 Измеряемая среда.
- 8.1.1.1 Измеряемой средой являются жидкость, газ или пар, находящиеся в условиях измерений в однофазном состоянии.
- 8.1.1.2 Возможность применения расходомера должна быть согласована с изготовителем в следующих случаях:

при измерении жидкости:

- жидкость является коррозионно-активной к материалам деталей расходомера, контактирующих с измеряемой средой.
  - жидкость является абразивной;
  - рабочие условия близки к точке кипения жидкости;

при измерении газа:

- в газе повышенное содержание серы или сероводорода, приводящее к коррозионной активности среды;
  - в газе присутствуют элементы галогенного ряда (хлор, бром и т.д.);
- иные компоненты газа являются коррозионно-активными к материалам деталей расходомера, контактирующих с измеряемой средой;
  - рабочие условия близки к точке росы газа.
  - 8.1.2 Условия применения расходомеров
- 8.1.2.1 При измерении расхода жидкости, для исключения появления в ИТ газовой фазы необходимо обеспечить температуру процесса ниже точек кипения по всем компонентам жидкости. Для исключения кавитации необходимо выполнять рекомендации п.2.1.5.
- 8.1.2.2 Условия применения расходомера должны соответствовать требованиям, установленным к следующим характеристикам: давлению, температуре, плотности и скорости потока газа; давлению, температуре и влажности окружающей среды; характеристикам энергоснабжения, допускаемым уровням напряженности электромагнитных полей, индустриальных радиопомех и вибраций.
  - 8.2 Подготовка к выполнению измерений.
  - 8.2.1 Выбор исполнения расходомера
- 8.2.1.1 Допускаемый диапазон расхода определяют в соответствии с таблицей 1.3 настоящего Руководства по эксплуатации для соответствующего исполнения расходомера.
- 8.2.1.2 При выборе типоразмера расходомера необходимо руководствоваться п.1.5.2 настоящего Руководства по эксплуатации.
- 8.2.2 Выбор размещения расходомера, подготовку измерительного трубопровода, монтаж расходомера производят в соответствии с п.2.2 настоящего Руководства по эксплуатации.
  - 8.2.3 Перед выполнением измерений проверяют соответствие:
- эксплуатационных характеристик применяемого расходомера реальным условиям измерения потока жидкости или газа (температура, давление, скорость потока, компонентный состав);
  - монтажа расходомера п. 2.2 настоящего Руководства по эксплуатации;
- электрических подключений согласно Руководству по эксплуатации на электронный блок соответствующего исполнения.
- 8.2.4 Проводят проверку герметичности измерительного трубопровода в соответствии с действующей нормативной документацией.
- 8.2.5 С помощью ПО «ЭМИС-Интегратор» выполняют настройку параметров электронного преобразователя:
- устанавливают отсечку по минимальному расходу, по минимальной амплитуде сигнала (при необходимости);
- настраивают параметры фильтрации сигнала с сенсора в зависимости от наличия и уровня помех;
- настраивают выходные сигналы расходомера в соответствии с параметрами входных сигналов вторичного оборудования;
- настраивают параметры цифрового интерфейса (Modbus или HART) в соответствии с параметрами интерфейса вторичной аппаратуры;
  - настраивают параметры отображения результатов измерений на встроенном дисплее.
  - 8.3 Выполнение измерений
  - 8.3.1 Расходомер выполняет измерение следующих параметров потока среды:
  - объемный расход;
- объем измеряемой среды, прошедшей через расходомер за время измерения после сброса соответствующего сумматора;
- 8.3.2 На основании данных с подключенных внешних или встроенных датчиков температуры и давления или по введенным фиксированным значениям давления, температуры и плотности измеряемой среды рассчитываются следующие параметры:
  - массовый расход;
- масса измеряемой среды, прошедшей через расходомер за время измерения после сброса соответствующего сумматора;
  - объемный расход, приведенный к стандартным условиям;
  - объем, измеряемой среды, приведенный к стандартным условиям.
- 8.3.3 Результаты измерений считывают по частотному, импульсному, токовому выходным сигналам, цифровым протоколам Modbus RTU или HART или с дисплея расходомера.
  - 8.4 Преобразование выходных сигналов расходомера в значения измеряемых величин
- 8.4.1 Преобразование частотного выходного сигнала в показания объемного или массового расхода (далее измеряемая величина, ИВ) выполняется по формуле:

$$V = \frac{v_{max}}{F_{max}} \cdot f, \tag{N.1}$$

где V – значение измеряемой величины, м3/ч (т/ч);

Vmax – максимальное значение измеряемой величины, м3/ч (т/ч), соответствующее частоте Fmax;

Fmax – максимальное значение частоты выходного сигнала, Гц, Fmax=1000Гц;

f – значение частоты выходного сигнала, Гц.

Значение *Vmax* задается при настройке частотного выходного сигнала расходомера и может быть изменено пользователем.

8.4.2 Преобразование импульсного выходного сигнала в показания объемного или массового расхода (далее – измеряемая величина, ИВ) выполняется по формуле:

$$V = 3.6 \cdot f \cdot w, \tag{(1.2)}$$

где V – значение измеряемой величины, м3/ч (т/ч);

f – значение частоты выходного сигнала, Гц;

w – цена импульса, л/имп (кг/имп).

8.4.3 Преобразование импульсного сигнала в показания объема или массы (далее – измеряемая величина, ИВ) выполняется по формуле:

$$V = N \cdot w, \tag{(1.3)}$$

где V — значение измеряемой величины, ед.ИВ — объем или масса измеряемой среды, прошедшие через расходомер за время измерения;

N – число импульсов на выходе расходомера за время измерения;

w – цена импульса, ед.ИВ.

Значение w задается при настройке импульсного выходного сигнала расходомера и может быть изменено пользователем.

8.4.4 Преобразование токового выходного сигнала в показания объемного или массового расхода, давления или температуры (далее – измеряемая величина, ИВ) выполняется по формуле:

$$V = \frac{(I-4)\cdot (Vmax-Vmin)}{16},\tag{V.4}$$

где V – значение измеряемой величины, ед.ИВ;

I − значение тока на выходе расходомера, мА;

Vmax — значение измеряемой величины, соответствующее 20 мA, ед.ИВ — по умолчанию настраивается на максимальное значения расхода, давления или температуры;

*Vmin* — значение измеряемой величины, соответствующее 4 мA, ед.ИВ — по умолчанию настраивается на 0.

Значения *Vmin*, *Vmax* задаются при настройке токового выходного сигнала расходомера и могут быть изменены пользователем.

- 8.4.5 По цифровому каналу связи RS-485 измеряемые величины передаются в виде числовых значений, единицы измерения указаны в карте регистров.
- 8.4.6 По цифровому каналу связи HART измеряемые величины передаются в виде числовых значений с единицами измерения.
  - 8.5 Контроль точности результатов измерений
  - 8.5.1 Общие положения
- 8.5.1.1 Расходомер подлежит поверке в соответствии с методикой поверки 9B-200.000.000.000 МП.
- 8.5.1.2 Регламент контроля точности результатов измерений излагают в инструкции по эксплуатации узла учета.
  - 8.5.1.3 Контролируют следующие показатели:
- отсутствие сбоев показаний расходомера путем их периодического сличения с показаниями аналогичных СИ, установленных на других ИТ, или сравнения показаний с дублирующей системой (при ее наличии) измерений расхода среды;
  - метрологические характеристики (далее МХ) расходомера;
- расход измеряемой среды через ИТ, рабочие давление и температуру, которые должны находиться в пределах установленных диапазонов;
  - выполнение требований условий измерений.
- 8.5.1.4 Интервалы проведения очередного контроля МХ устанавливают с учетом условий эксплуатации расходомера и требований к точности измерений по согласованию заинтересованных сторон. Внеочередной контроль проводят по требованию одной из сторон.
- 8.5.1.5 Контроль MX расходомера не должен препятствовать проведению измерений расхода в установленном порядке.
  - 8.5.2 Контроль метрологических характеристик расходомера
- 8.5.2.1 Контроль МХ расходомера проводится по требованию нормативных документов пользователя.

Применяют следующие варианты установки контрольного средства измерений:

- а) на рабочем ИТ до или после рабочего расходомера на период контроля МХ рабочего расходомера. После контроля вместо контрольного СИ устанавливают монтажную вставку;
- б) на контрольном ИТ, последовательное соединение которого с рабочими ИТ обеспечивают с помощью дополнительной трубной обвязки.

Контрольное СИ может устанавливаться как стационарно, так и временно, на период контроля МХ рабочего расходомера. В случае временной установки после контроля МХ расходомера вместо контрольного СИ устанавливают монтажную вставку.

- 8.5.2.2 При проведении контроля проводят не менее трех измерений контролируемого параметра процесса (объемного или массового расхода, объема, массы, давления или температуры) при стабильном значении расхода. При каждом измерении обеспечивают время измерения не менее 60 секунд или набор не менее 1000 импульсов при использовании частотно-импульсного выхода расходомера.
- 8.5.2.3 Результат контроля считают положительным, если для каждого измерения выполняется условие:

$$\left|\frac{V_{\rm K} - V_{\rm CK}}{V_{\rm CK}}\right| \cdot 100\% \le \sqrt{\delta_{\rm ck}^2 + \delta_{\rm K}^2},\tag{\textit{U.5}}$$

где  $V_{\kappa}$  – значение контролируемого параметра процесса по показаниям расходомера;

 $V_{c\kappa}$  – значение контролируемого параметра процесса по показаниям контрольного СИ;

- $\delta_{\it c\kappa}$  предел относительной погрешности контрольного СИ при измерении контролируемого параметра (включая погрешность вторичной аппаратуры) (указывается в документации на средство контроля);
- $\delta_{\kappa}$  предел относительной погрешности расходомера при измерении контролируемого параметра (включая погрешность вторичной аппаратуры).
- 8.5.2.4 Если условие не выполняется для одного из измерений, его результат исключают и проводят одно дополнительное измерение.
- 8.5.2.5 При несоблюдении условия для двух и более измерений и в случае повторного невыполнения дополнительного измерения выясняют причину, вызвавшую невыполнение условия, принимают меры по ее устранению и проводят повторный контроль.
- 8.5.2.6 При отрицательном результате повторного контроля расходомер подлежит ремонту и внеочередной проверке или калибровке.

# www.emis-kip.ru

# ЗАО «ЭМИС»

Российская Федерация, 454007, Челябинск, пр. Ленина, 3, офис 308 Служба продаж

+7 (351) 729-99-12 (многоканальный)

+7 (351) 729-99-16

sales@emis-kip.ru

Служба технической поддержки и сервиса

+7 (351) 729-99-12

доб. 741, 744, 756, 763.

support@emis-kip.ru